REDUX

A Flexible Path for X-ray Astronomy

Martin Elvis

Harvard-Smithsonian Center for Astrophysics

"Flexible Path"

- From 2009 report of Augustine Commission
- Response to budget limitations
- Straight to ultimate goal is unachievable
- Define range of enabling steps
- Each good in itself
- Same situation as X-ray Astronomy now

SEEKING A HUMAN SPACEFLIGHT PROGRAM WORTHY OF A GREAT NATION

X-ray Astronomy Responses

- Tactical:
 - This decade launch
- Strategic:
 - Launch >2020, 2025
- Keep flexible on both
 - RFI responses are only existence proofs:
 "Point designs"

Tactical in 300 Words

needs a cheaper 'plan B'.

IXO: Overly Broad Scope?

Quasar Spectral Energy Distribution

Elvis et al, 1994

• Forced Co-pointing of Gratings, Calorimeter, Hard-X-rays, timing, polarimeter

• Would rarely have common targets. several instruments typically idle

REDUX: One Mission, 3 Specialized Telescopes*

Research **E**xplorers for the **D**iscovery of the **U**niverse in **X**-rays

- Re-imagines Con-X concept
 Gratings: <4m <1keV ~10"
 Calorimeter: 10m >1keV ~60"
 Hard X-ray: 30m >10keV ~20"
- Optimizes area/kg of mirror
- Much more time for each instrument
- *Weakness:* wide field imaging only in gratings 0-order.

*proposed by ME to Con-X SWG in 2004 to FST, shown here with minor modifications

REDUX: One Mission,3 Specialized Telescopes

- Each "Explorer"-sized
- Strengthens 'Constellation-X' concept
 - > 70% more science per year
 - Larger gain with 5 instrument IXO
 - Calibration in parallel, not serial gains ~5%-10%
 - Co-point when needed
 - Harder to cut: each spacecraft is unique

REDUX vs. Con-X Design Ref. Mission 2004

Category	Time	SXT-	SXT-	НХТ	Instrument	Util x time	
	Msec	XMS	RGA		Utilization		5 instrument IXO
Bright AGN	9.0	Prime	Prime	Prime	1	9.0	ightarrow Larger gains
Other AGN	5.5	Prime	2nd	2nd	2/3	3.7	
Clusters	10.8	Prime			1/3	3.6	
Ellipticals/Groups	4.0	Prime			1/3	1.3	
QSOs & IGM	10.0	2nd	Prime		1/2	5.0	
Faint X-ray background sources	15.0	Prime		2nd	1/2	7.5	Gain over Con-X = 1/0.58 =
Spirals/starbursts	2.4	Prime		2nd	1/2	1.2	1.72
SNR	9.0	Prime		2nd	1/2	4.5	
X-ray Binaries	3.8	Prime	Prime	Prime	1	3.8	
Black Hole Candidates	2.0	Prime	Prime	Prime	1	2.0	
Neutron stars	6.0	Prime	Prime	2nd	2/3	4.0	
Stars	9.0	2nd	2nd		1/2	4.5	
Solar System	0.4	2nd	2nd		1/2	0.2	
TOTAL (3 years)	86.9					50.3	
	[1.0]					[0.58]	

REDUX: One Mission,

3 Specialized Telescopes

- Budgetary flexibility
 - "Explorer" is broad: allows scaling
 - RFI responses tend to match IXO large
 - $-\Sigma$ AEGIS + EPE + HEX-P = \$2B.
 - Greater efficiency allows smaller missions. [except for timing studies]
 - Take RFI responses as point models
 - Explore options

REDUX: One Mission, 3 Specialized Telescopes

- Politically flexible:
 - Inter-Agency collaboration without technology or (strong) schedule dependence
 - Launches can be spaced over a few years
 - If ESA punts on ATHENA, US can do up to 3
 - If ESA chooses ATHENA, US can do gratings/high energy
 - If ESA chooses LOFT for M3, US can downplay timing
 - Encourage JAXA to lead/collaborate on 1 or more

REDUX: One Mission, 3 Specialized Telescopes*

- Strengthens 'Constellation-X' concept
 - > 70% more science per year
 - Co-point when needed, independent otherwise
 - Harder to cut as each spacecraft is unique
- Co-pointing synergy: implications
 - Overlapping fields of regard
 - Some % of time applied for jointly

*proposed by ME to Con-X SWG in 2004 to FST, shown here with minor modifications

Strategic: No IXO Flagship in 2020

- 2020 Decadal won't give it #1 ranking
- That sinking feeling: *E.g.* Stein Sigurdson, "Dynamics of Cats" blog post, 11 Aug 2010:
- *"IXO is solid, has a huge constituency of good hard working x-ray observers, but is incremental.."*
- Change is allowed: "Given the multi-decade timescales required for development of major facilities from concept to construction to operation, it should not be surprising that many of these projects have evolved in technical and/or scientific scope since AANM" [2000 Decadal, 7-2]
- Need high resolution, large area Chandra successor

STRATEGIC: NEED A REPLACEMENT FOR CHANDRA

MEGASECOND CLASS OBSERVATIONS FOR THE BRIGHTEST, NEAREST EXAMPLE OF EACH CLASS

NGC1275 IN THE CORE OF THE PERSEUS CLUSTER

Science gained from 10" to <1"

- Quasar jets at high z
- Pulsar wind nebulae
- Starburst galaxy abundances
- Sources 'beyond the X-ray background': galaxy evolution, high z quasars
- Star formation regions
- Cluster cooling fronts, galaxy interactions
- Cluster-Quasar interaction
- Quiescent supermassive black holes
- Binary black holes
- Gravitational lenses
- Galaxy XRB populations
 - All essentially inaccessible at 10arcsec HPD

Approved for public release, distribution unlimited

Images selected from Chandra press releases 2002-2004

SMART-X

- The Right Approach.
- Point design proposed
- Demonstrating Optics comes first
- BUT: Is 20x Chandra area enough in 2020?
- Competition for #1 slot will be tough:
 - Earth-like planets imager
 - Inflation: B-modes in CMB
 - UV 4-meter class telescope
 - Other, new, concepts
- Need revolutionary science
 - Equivalent to AXAF/Chandra driver:

"Resolve the X-ray background"

SMART-X

- Stay Flexible
 - for 5 years, while developing optics
 - Consider minor tweaks: factors of 2 can add up. e.g.
 - C-layer to mitigate 2keV edges
 - Minimize vignetting: H-length, packing density, outer radius
 - Is 6 keV sacrosanct? More area, fewer shells at 5 meters
 - Depends on driving science. E.g. Fe-K @ z>1, E(obs)<3.2 keV

Is 1/2" enough?

THE ANTENNAE COLLIDING GALAXIES SYSTEM

SMART-X

- Stay Flexible
 - for 5 years, while developing optics
 - Consider minor tweaks: factors of 2 can add up. e.g.
 - C-layer to mitigate 2keV edges
 - Minimize vignetting: H-length, packing density, outer radius
 - Is 6 keV sacrosanct? More area, fewer shells at 5 meters
- Explore matching Hubble, JWST angular resolution
 - Ray trace limit is near 0.1"
- Explore beyond Wolter optics
 - E.g. 4 reflection designs to widen high resolution field
 - at cost of factor 2 in area
- Explore beyond calorimeters, *e.g.*
 - R>5000 where the lines are, <2keV, needs Δ E< 0.4eV, 0.08eV @ 0.4keV
 - Focal plane, long slit spectrographs?
 - Kumakhov lenses for Integral Field Unit spectrographs?
 - Area losses acceptable now area is large

REDUX

Tactical:

- Specialized missions give better return/\$
- Develop shorter term optimized technologies
- Explore options, respond to changes

Strategic:

- Keep exploring options
- Pursue game-changing long term technologies simultaneously with tactical
- Stay Flexible