

Group 1: No Drag Free Subsystem

(also called the Long Arm systems)

RFI Response Assessment Summary

Evaluation Team: Matt Benacquista Shane Larson Ron Hellings Stephen Leete Gary Welter John Ziemer Jeff Livas

Gravitational Wave Workshop Linthicum, MD

This presentation contains no ITAR protected information D

Group 1: No Drag Free

Summary:	Fol	kner	LAGRANGE (McKenzie et al)		
	Pro	Con	Pro	Con	
Concept	No drag free; extension of GRAIL	Highly accurate measure of solar luminosity/wind, s/c surface temp rqd	No drag-free, clever use of geometry	Highly accurate measure of solar luminosity/wind, s/c surface temp rqd	
Science	Three arms/6 links gets polarization info	few MBH's, less sky than LISA, no EMRIs	some MBH's, some EMRIs at 40 cm	less sky than LISA, less polarization (closer to linear)	
Payload/ Instrument	t Three arms	weak laser signal (50)- 2; phase locking with required performance not demonstrated		somewhat weaker laser system, opening angle, 2 types of payload, no 3rd arm	
Spacecraft	simple	comm is harder	simple, comm is relatively easy	2 non-identical payloads	
Mission design		long cruise phase, high doppler rate	easy	Requires station- keeping	
Ops		data rate	comm		
Risk	No drag free	can't test spurious effects		can't test against spurious effects, but can calibrate	
Readiness	No Drag Free	New sensors	no drag free	New sensors	
Cost	No drag Free subsystem	Long transfer time and associated prop cost, including substantial maneuvering	no drag free subsystem	Two s/c types	

Gravitational Wave Workshop Linthicum, MD

This presentation contains no ITAR protected information

Group1: No Drag Free

Gravitational Wave Workshop Linthicum, MD

Decadal-endorsed

	Category	Units	Folkner	McKenzie20	McKenzie 40	SGO-High
		overte/veer	10	14		40
	Massive DT - 55	events/year	10	14	20	42
J	Massive BH -LS	events/year	14	18	21	23
٦	EMRI	events	0	0	8	800
	Discovery Space	SGO-High = 1	0.02	0.04	0.18	1
	WD-WD Detections		300	300	4000	25000

Group 1 MBHB Horizons

Group 1: Massive BH Horizons From N. Cornish/Science Task Force

Gravitational Wave Workshop Linthicum, MD

 \mathcal{Z}

Group 1 Massive BH Detections

From N. Cornish/Science Task Force

Gravitational Wave Workshop Linthicum, MD

Group 1 Massive BH Detections

From N. Cornish/Science Task Force

Gravitational Wave Workshop Linthicum, MD

This presentation contains no ITAR protected information

Group 1: EMRI Horizons

Gravitational Wave Workshop Linthicum, MD

Group 1: EMRI Detections

From N. Cornish/Science Task Force

Group 1: 10/10 Binary Black Holes

Gravitational Wave Workshop Linthicum, MD

Group 1: Discovery Space

From N. Cornish/Science Task Force

Dec 20-21 2011

Gravitational Wave Workshop Linthicum, MD

Group 1 Binary WDs

0.5/0.5 Binary White Dwarfs

Gravitational Wave Workshop Linthicum, MD

This presentation contains no ITAR protected information

Group 1: WD-WD Detections

100000 10000 White Dwarf Detections 1000 100 10 1 SGO lowest SGO mid Tinto 2 Conklin Saif 500m GADFLI 10 SGO hi Omega Tinto LISA Tinto 1 SGO lo Folkner McKenzie 40 GADFLI 1 GADFLI 0.1 Saif 500km McKenzie 20 Gravitational Wave Workshop Linthicum, MD This presentation contains no ITAR protected information

From N. Cornish/Science Task Force

Decadal-endorsed

				LAGRANGE/	LAGRANGE/	
_	Category	Units	Folkner	McKenzie20	McKenzie 40	SGO-High
	Massive BH - SS	events/year	10	14	20	42
	Massive BH -LS	events/year	14	18	21	23
٦	EMRI	events	0	0	8	800
	Discovery Space	SGO-High = 1	0.02	0.04	0.18	1
	WD-WD Detections		300	300	4000	25000

- LAGRANGE has better overall performance for MBH, but Folkner can see highest mass systems if large seeds. (Comparable range, different mass sensitivity)
- LAGRANGE has better horizon distance for EMRIs, but detections are only likely for 40 cm optics.
- Discovery space is larger for LAGRANGE, although Folkner has better low frequency performance.
- Minimal likelihood of stellar mass black hole detection.
- Substantial improvement in DWD detection and Galaxy coverage for LAGRANGE 40 cm optics.

Group 1: Science Orbits (Relative to SGO-High & -Mid)

PCOS Physics of the Cosmos Program

- Constellation Flexure
- Folkner Very Small, GMAT QO: (%L/L ~0.0005 / % ~ 0.05° / % ~ 4 m/s)
- McKenzie Small, RFI (⊗L/L ~0.05 / ⊗ ~ 0.14° / ⊗v ~ 110 m/s) vs. SGO-Mid: (⊗L/L ~0.06 / ⊗ ~ 0.6° / ⊗v ~ 2 m/s) 2-year vs. SGO-High: (⊗L/L ~0.01 / ⊗ ~ 0.8° / ⊗v ~ 13 m/s) 5-year
- Station Keeping Needed
- Folkner No highly stable for 2 years+
- McKenzie Yes (certainly for satellite at L2)
- Communications (perhaps should be under operations (?))
- Folkner Hard for direct ops, moderate for nominal science ops
- McKenzie Moderate (Distance like SGO-Mid)
- Thermal Variation due to Solar Angle No Variation
- Thermal/Power Variation in Biannual Eclipse Seasons No Variation
- Sunlight in Optical Path Not an Issue

Green is better than SGO-like, Red is worse, and Blue is similar

Group 1: Trajectories – Pros and Cons (Relative to SGO-High & -Mid)

- Launch Vehicle C3
- Folkner Small: ~ -1.7 (km/s)² (set up for Lunar assist)
- McKenzie Small, ~ -1.7 (km/s)² (if using Lunar assist to get to L2)
- vs. SGO-Mid 0.1 (km/s)², or SCO-High: 0.3 (km/s)²
- Propulsion Module
- Folkner Large, \otimes V ~ 2000 m/s (~ 630 after Lunar assist, ~ 1300 at target
- McKenzie Moderate, ~ 450 m/s (225 to escape L2/Earth, 225 at target)
- vs. SGO-Mid ⊗V ~ 130 m/s (each), or SCO-High: ⊗V ~ 1100 m/s (each)
- Trajectory Duration
- Folkner Long, ~ 3.5 years to get to 165°
 - (assuming 4 satellite orbits get to 165°)
- McKenzie Moderate, ~ 12 to 18 months (after leaving L2) vs. SGO-Mid TM~ 18 months, or SCO-High: TM~ 14 months

Group 1: Orbits

Group 1: Other considerations

- Other considerations:
- Weak light phase locking
- Folkner adequate performance demonstrated?
 - Dick (2008) reference shows performance to ~ 10 Hz
- McKenzie -
- Instrumentation
- Folkner
- McKenzie GOES space weather instruments rather than SWEPAM? This applies to both missions. Radiometer (VIRGO-like), SWEPAM or GOES ion sensors, accelerometer (GOCE-like)
- Spacecraft
- Folkner
- McKenzie Look for cost reduction with 4 identical spacecraft

- LAGRANGE seems to have better or comparable science performance in all categories
- 40 cm telescope offers more considerably more science in all areas.
- Both missions are confined to the ecliptic plane and rotate with a 1 year period.
- If LAGRANGE is sent forward, look for cost reduction opportunity by making payloads and spacecraft identical
- Current configuration looks like 2 distinct spacecraft are needed: corner and end spacecraft
- Could be a trade study or a design change
- Consider 20 vs 40 cm telescopes