

ISA Kititikiers Mission Sicilers

15Annder :

Paul McNamara LISA Pathfinder Project Scientist

Introduction

- LISA Pathfinder (LPF) is a technology validation mission for NGO¹
 - LPF was approved by ESA to demonstrate the concept of low frequency gravitational wave detection in space

LISA Pathfinder will test in flight:

- Inertial sensors (a.k.a. Gravitational Reference Sensor)
- Interferometry between free floating test masses
- Drag Free and Attitude Control System (DFACS)
- Micro-Newton propulsion technology
- The basic idea of LISA Pathfinder is to squeeze one arm of the NGO constellation from 1 million km to a few tens of cm!
 - Fully tests NGO local interferometry

¹ When approved by the Science Programme Committee, LISA Pathfinder was a dedicated technology validation mission for the LISA mission. In the mean time, LISA has been reformulated and renamed NGO

LISA Pathfinder

> LISA Pathfinder consists of:

- Spacecraft
 - Provided by ESA
 - Industrial Prime Contractor: Astrium UK
 - s/c also includes the drag free control software (DFACS) and micro-Newton thrusters
- Payloads
 - The LISA Technology Package (LTP)
 - Provided by European member states and ESA
 - Consists of inertial sensors, and interferometric readout
 - The Disturbance Reduction System (DRS)
 - Provided by NASA
 - Consists of processor running drag-free control software and micro-Newton thrusters

LTP Core Assembly

DFACS Principle

x₁ interferometer

x₁ Drag Free

x₂-x₁ Interferometer

x2 low frequency control

DFACS

LPF Development Approach

LPF is a Pathfinder for spaceborne gravitational wave detectors

- System design is for NGO
- Relaxation of performance requirements is only allowed to make testing conditions achievable. It shall not affect the design.

> Implications:

- When one subsystem reaches a given level of readiness for LISA Pathfinder (CDR, QR, FAR, etc) it reaches the same level of readiness for NGO too.
- All the development risks up to that stage are consequently retired also for NGO
- Risk of unforeseen system level problems (estimated to be low) is finally retired by the flight.

NGO basic design items

> Free flying test mass subject to very low parasitic forces:

- Drag free control of spacecraft (non-contacting spacecraft)
- Low noise microthruster to implement drag-free
- Large gaps, heavy masses with caging mechanism
- High stability electrical actuation on cross degrees of freedom
- Non contacting discharging of test-masses
- High thermo-mechanical stability of S/C
- Gravitational field cancellation

Precision interferometric, *local* ranging of test-mass and spacecraft:

- pm resolution ranging, sub-mrad alignments
- High stability monolithic optical assemblies

- High stability telescopes
- High accuracy phase-meter
- High accuracy frequency stabilization
- Constellation acquisition
- Precision attitude control of S/C

Items that can only be validated in flight

> Free flying test mass subject to very low parasitic forces:

- Drag free control of spacecraft (non-contacting spacecraft)
- Low noise microthruster to implement drag-free
- Large gaps, heavy masses with caging mechanism
- High stability electrical actuation on cross degrees of freedom
- Non contacting discharging of test-masses
- High thermo-mechanical stability of S/C
- Gravitational field cancellation

Precision interferometric, *local* ranging of test-mass and spacecraft:

- pm resolution ranging, sub-mrad alignments
- High stability monolithic optical assemblies

- High stability telescopes
- High accuracy phase-meter
- High accuracy frequency stabilization
- Constellation acquisition
- Precision attitude control of S/C

Items benefiting from in-flight validation

> Free flying test mass subject to very low parasitic forces:

- Drag free control of spacecraft (non-contacting spacecraft)
- Low noise microthruster to implement drag-free
- Large gaps, heavy masses with caging mechanism
- High stability electrical actuation on cross degrees of freedom
- Non contacting discharging of test-masses
- High thermo-mechanical stability of S/C
- Gravitational field cancellation

Precision interferometric, *local* ranging of test-mass and spacecraft:

- pm resolution ranging, sub-mrad alignments
- High stability monolithic optical assemblies

- High stability telescopes
- High accuracy phase-meter
- High accuracy frequency stabilization
- Constellation acquisition
- Precision attitude control of S/C

NGO Design Items Validated By LISA Pathfinder

> Free flying test mass subject to very low parasitic forces:

- Drag free control of spacecraft (non-contacting spacecraft)
- Low noise microthruster to implement drag-free
- Large gaps, heavy masses with caging mechanism
- High stability electrical actuation on cross degrees of freedom
- Non contacting discharging of test-masses
- High thermo-mechanical stability of S/C
- Gravitational field cancellation

Precision interferometric, *local* ranging of test-mass and spacecraft:

- pm resolution ranging, sub-mrad alignments
- High stability monolithic optical assemblies

- High stability telescopes
- High accuracy phase-meter
- High accuracy frequency stabilization
- Constellation acquisition
- Precision attitude control of S/C

LTP Salient Features

- LISA Technology Package (LTP) is the European instrument payload of LPF
- Two Au:Pt test masses housed in separate vacuum enclosures
- Relative position of test masses read-out by:
 - Heterodyne laser interferometry on sensitive axis
 - Capacitive sensing on all axes
- Four interferometers on ultra-low expansion optical bench
 - x1, x2-x1, Frequency noise, reference
 interferometer

LTP Status

All electronic units have been delivered and integrated to the spacecraft

 Laser, laser modulator, phasemeter, payload computer, UV lamp unit, ISS front-end electronics, diagnostics

Reference Laser Unit

Phasemeter

Payload Computer

ISS Front-End Electronics

LPF during AIT at Astrium UK

LTP Status

- Solution Notice Assembly Are the LTP Core Assembly are ready, however subsequent integration has been delayed.
 - Optical bench
 - Inertial sensor
 - Test Masses
 - Vacuum enclosure
 - Grabbing, positioning and release mechanism

Uncoated Au:Pt Test Mass

Optical Bench

Test Mass Grabbing, positioning and Release Mechanism (GPRM)

LTP Status

- Delays in the integration, and delivery, of the LTP Core Assembly are due to problems with the test mass launch lock
 - Original (hydraulic) launch lock failed during testing
 - A new design has now been selected, and flight units are being manufactured
 - New design is a much simpler, singleshot mechanism utilising a paraffin actuator
 - Delivery of FMs is scheduled for September 2012

TOQM

- In-lieu of the LCA, a Thermal-Optical Qualification Model (TOQM) was created to allow the environmental testing of the spacecraft to proceed
 - Consists of a flight optical bench, with flight mounting struts, and thermal mass dummies of the inertial sensors

LPF Spacecraft Bus

All units of the spacecraft bus have been delivered and integrated

 Only units not yet integrated are the micro-thrusters (which are mounted on the outside on the spacecraft)

System environmental tests are now complete

Following closed-loop tests in January, spacecraft will be put into storage awaiting the delivery of the LCA

System Test Campaigns

Sine Vibration

Transfer Orbit Thermal Test

On-Station Thermal Test

OSTT Sequence

Fit to OSTT Performance

Micro-thrusters

LPF will carry two sets of micro-thrusters

- The NASA supplied Colloidal Thrusters
- European supplied thrusters
- The baseline thruster for LPF is the Cs Field Emission Electric Propulsion (FEEP) thruster
- Due to delays in the qualification schedule of the FEEPs, the project has recently instigated a review of the use alternative thrusters for LPF
 - Cold Gas thrusters (the GAIA thruster)
 - Micro Radio-frequency Ionisation Thrusters (μ -RIT)

Micro-Thrusters

- Review Board Conclusions (May 2011):
 - Continue FEEP development, culminating in two tests demonstrating the LPF lifetime (600Ns) by June 2012
 - Industry to study the cold gas thrusters, with PDR to be held in October 2011
 - Industry to study micro-RIT thrusters with SRR in September 2011, and PDR by the end of the year

Section As of now:

- Cold Gas PDR was successful
 - Major issue is the schedule for the delivery of the thruster units
 - Board recommended to start the procurement of the long-lead items before the decision is made on the flight thruster technology
- Micro-RIT
 - SRR has been held
 - Development of the technology will continue up to PDR level

Measured thrust noise of GAIA thrusters

Micro-Thrusters

- Review Board requested that the FEEP tests continue into next year
 - Culminating in two thruster assembly endurance tests, both of which must demonstrate the full LPF total impulse requirements.
- After thorough investigation, the FEEP thruster head has been redesigned to limit caesium leakage from the emitter slit
 - Achieved in part by narrowing the slit width from $1.3\mu m$ to $0.7\mu m$
- Ongoing thruster unit validation test is demonstrating that the new design of thruster is working perfectly!!

Downselect on which thruster to take to flight will be made in June 2012.

Micro-Thrusters

NB: As of today, total impulse now at ~300Ns (~900hours). Equivalent to ~50% of LPF total impulse requirement

LPF Performance

- Extensive performance noise model has been developed by both the PI and industry
- The main goal of LPF is to validate this noise model
- Model is updated as ground test results become available
- Current Best Estimate of LPF is now approaching the NGO requirements!

Requirements noise projection

Current Best Estimate

In Summary

 All environmental tests complete
 The caging mechanism launch lock drives the critical path

- Results from OSTT (TOQM) demonstrate performance better than requirements
- Cold Gas thrusters are a viable alternative to the FEEPs.
- The project will enter hibernation at the beginning of next year
 - Hibernation is scheduled to last
 - ~15months

> Launch is scheduled for June 2014.

Thank you

ESA ESOC EADS Astrium ŪK EADS Astrium GmbH University of Trento Albert Einstein Institute University of Glasgow University of Birmingham Imperial College London

 Institut d-Estudis Espacials de Catalunya
 Universidad Politecnica de Barcelona

ETH Zurich

ABG

ESA ESTEC

ESA

Laben Carlo Gavazzi Space ALTA ARCS Contra Kaiser Threde NTE SCISY Spacebel SRO lechnologica ARM

ASA Goddard

BUSEK

The lot of the state of the sta