

SGO Low: A LISA-like gravitational wave observatory with four links

Ira Thorpe – NASA/GSFC For the SGO Core Concept Team Submitted in Response to NASA RFI #NNH11ZDA019L

Overview

- Design Goal: Reduce LISA measurement concept to minimum fourlink design while retaining primary science targets.
- Architecture: Four "identical" SC in 1Gm triangle, each with one payload assembly
- Two "corner" SC compare laser phase via 10km free-space link

Design Parameters

- Arm Length: 1Gm
- Opening Angle: 60°
- Orbit: Heliocentric drift-away at ~9° behind Earth
- Displacement sensitivity: 18x10⁻¹² m/Hz^{1/2}
- Residual Acceleration Noise: 3x10-15 m/s²/Hz^{1/2}
- Science Operations Duration: 2 years

Projected Sensitivity

- Above ~30mHz, sensitivity is equal or better than SGO High
- Below ~10mHz, instrumental sensitivity is ~10x worse
- No significant contribution from galactic foreground
- Sensitive to all three classes of LISA astrophysical sources

Measurement Performance

- Massive Black Hole Binaries
 - Detect ~12/yr with SNR ~ 100
 - median z ~ 5, max z ~ 12
 - Masses/spins ~ few %
 - Distance ~ 20%
 - Sky Location ~ 80deg²
- Extreme Mass Ratio Inspirals
 - Detect ~20/yr @ z < 0.15
 - Masses/Spins ~ 10⁻⁴
- Galactic Binaries
 - ~2x10³ resolved sources
 - 7 verification binaries
 - Sky location ~ few deg

	Massive Black Hole (MBH) Merger								
Detection Rate $\sim 12/\text{yr}$ for 2 years									
	Characteristics	• Redshifts: $0 \lesssim z \lesssim 12, \tilde{z} \sim 5$							
)		• Mass Range: $10^4 - 10^6$? M_{\odot}							
,		• Signal Duration: \sim weeks to months?							
	Observables	• Masses: $\frac{\sigma_M}{M} \sim 1\%$ @ $z = \tilde{z} \sim 5; \frac{\sigma_M}{M} \lesssim 1\%$ @ $z=1;$							
		• Spins: $\frac{\sigma_S}{S} \sim 3\%$ @ $z = \tilde{z} \sim 5; \frac{\sigma_S}{S} \lesssim 1\%$ @ $z=1$							
		• Luminosity Distance: $\frac{\sigma_{D_L}}{D_L} \sim 20\%$ @ $z = \tilde{z} \sim 5$; $\frac{\sigma_{D_L}}{D_L} \sim 1\%$ @ $z=1$							
		• Sky Localization: $\sigma_{\Omega} \sim 80 \text{ deg}^2 @ z = \tilde{z} \sim 5; \sigma_{\Omega} \lesssim 10 \text{ deg}^2 @ z=1$							
Science • History of MBH growth and galaxy mergers									
	Payoffs • Tests of General Relativity in strong-field, highly dynamical regime								
	Capture of Stellar Mass Compact Objects by MBH								
Detection Rate Best estimate: $\sim 20/yr$; Pessimistic: $< 1/yr$									
	Characteristics	• Compact Object: mostly BH with $M \sim 10 M_{\odot}$							
		possibly some NSs and WDs							
		• MBH Mass: $10^4 - 5 \times 10^6 M_{\odot}$							
		• Redshift Range: $z \lesssim 0.15$							
		• Orbital Period: $10^1 - 10^3$ s							
• Signal Duration: \sim years									
	Science	• History of MBH growth							
Payoffs• Populations and dynamics of compact objects		• Populations and dynamics of compact objects in galactic nuclei							
		• Precision tests of General Relativity and Kerr nature of MBHs							
	Capture of IMBHs by MBH								
	Characteristics Detectable at $z \lesssim 10$?, rates uncertain								
	Ultra-Compact Binaries								
Characteristics Primarily compact WD-WD binaries; mass transferring or det									
		Orbital periods: $\sim 10^2 - 10^4$ s							
	Detections	$\sim 2,000$ individual sources, including ≈ 7 known "verification binaries"							
		Diffuse galactic background at $f \lesssim 2? \mathrm{mHz}$							
	Observables	Orbital frequency; Sky location to few degrees;							
		Chirp mass and Distance from f for some high- f binaries							
	Science	$\bullet \sim 10-{\rm fold}$ increase in census of short-period Galactic compact binaries							
	Payoffs • Evolutionary pathways, e.g. outcome of common envelope evolution								
• Physics of tidal interactions and mass transfer									
		• WD-WD as possible SN Ia progenitors							

Science Performance

- Understand the formation of massive black holes
 - Not likely to directly detect seed BH
 - May constrain seed population by observing their progeny
- Trace the growth and merger history of massive black holes and their host galaxy (NWNH)
 - By measuring mass/spin and rough redshift of MBH mergers, BH growth is traced
 - EMRI's give very precise measurements in local universe
 - Sky localization insufficient for identifying host galaxy
- Explore stellar populations and dynamics in galactic nuclei
 - EMRI events help characterize immediate environments of MBH in the local universe
 - Some risk that no EMRI's are detected if pessimistic event rate estimates are assumed

Science Performance - Continued

- Survey compact stellar-mass binaries and study the structure of the galaxy
 - Few thousand individual binaries with measured mass & spin will provide information on the demographics of compact objects in the Milky Way.
- Confront General Relativity with observations
 - Compare MBH waveforms with numerical relativity
 - Map spacetime of individual MBH with EMRI and compare to Kerr solution (NWNH)
 - Compare EM and GW observations of galactic binaries
- Probe new physics and cosmology, and search for unforseen sources of gravitational waves (NWNH)
 - Limited by four-link design, which does not allow cross-checks

Instrument Design

Simplifications from SGO High / LISA

- Single GRS per SC, 12-DOF control system
- No Optical Assembly Tracking Mechanism
- Reduced laser power (0.7W)
- Reduced telescope size (25 cm)
- No on-board frequency reference (arm-locking)
- UV-LED charge control
- Reduced point-ahead angle and angle rate
- Reduced component count

Additional Components

8 cm back-link telescope with tip/tilt control

Spacecraft Design

Mission Design

Launch Stack

- Each SC mates with propulsion module
- Four SC/PM pairs stack in fairing
- Total wet stack mass of ~4300kg

Launch Vehicle Possibilities

- Atlas V (531), 650kg margin
- Falcon 9 Heavy, 9200kg margin. Shared launch?

• Trajectory:

- Direct insertion into drift-away
- Total ∆v ~ 130m/s

Orbit Stability

- $\Delta L/L$ ~ 0.6%, Doppler ~ 2 MHz, interior angle variation ~ 0.6°

Cost Estimate

Basis

- LISA Project costs from multiple epochs
- LISA Pathfinder development costs
- LV cost data
- 70% success probability and 20% reserves
- Credit taken for nonrecurring engineering costs

SGO High estimate	1.66
Launch vehicle savings	0.00
Optical assembly count reduction	-0.03
Payload mass or redundancy reduction	-0.10
Mission duration reduction	-0.12
SGO Low total	\$1.41B

ROM Cost Estimate: \$1.41B (FY12)

Schedule

- Schedule based on LISA project schedule with some savings during I&T and operations
- 9 years pre-launch, 22 months transfer & commissioning, 2 years operations
- Extended mission limited by constellation stability & communication

Phase		Duration (months)	
А		12	
В		30	
C/D		66	
Е	transfer	18	
	commissioning	4	
	Science ops	24	

Summary

- The SGO Low concept addresses 2 of the 3 science priorities for space-based gravitational wave detection identified in the NWNH report.
- Low technical risk due to heritage from LISA Pathfinder and past LISA technology development and risk-reduction activities.
- No cost savings relative to SGO Mid despite moderate loss of science performance
- Small cost savings relative to SGO High with significant loss of science performance

SGO Core Concept Team

Last	First	Institution	Last	First	Institution
Baker	John	NASA GSFC	Klipstein	William	JPL
Benacquista	Matthew	U. Texas Brownsville	Lang	Rvan	Washington University
Berti	Emmanuele	U. Mississippi	Larson	Shane	Utah State
Brinker	Edward	NASA GSFC	Littenberg	Tyson	NASA GSEC
Buchman	Saps	Stanford U.	Liver	loffrou	NASA CSEC
Camp	Jordan	NASA GSFC	Lives	viek	NASA GSFC
Cornish	Neil	Montana State Bozeman	McKenzie	NIK	JPL
Cutler	Curt	JPL	McWilliams	Sean	Princeton
de Vine	Glen	IPL	Mueller	Guido	U. Florida
Einn	L Sam	Poon State	Norman	Kyle	SGT
rum	L. Sam	Penin State	Spero	Robert	JPL
Gair	Jonathon	Cambridge U.	Stebbins	Robin	NASA GSFC
Gallagher	Robert	Javelin	Thorpe	James	NASA GSFC
Hellings	Ronald	Montana State Bozeman	Vallisneri	Michele	JPL
Hughes	Scott	MIT	Welter	Gary	NASA GSFC
			Ziemer	John	JPL