

Space-based Gravitational-wave Observatory (SGO)-Mid

Minimum Cost 3-arm/6-link LISA-like Mission

Presented by Jeff Livas for the SGO Core Team

GW Workshop Linthicum, MD

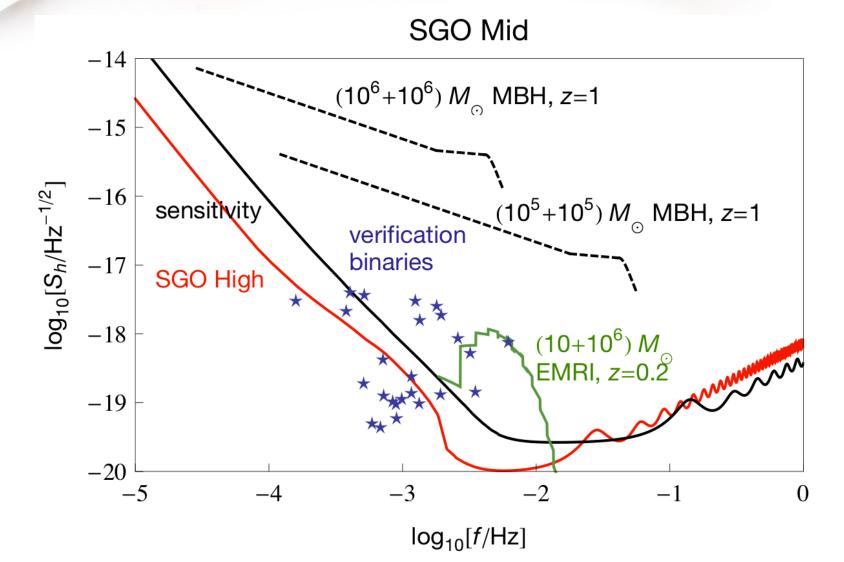
No ITAR protected information

Dec 20-21, 2011

Concept Description

Rationale for the configuration

- Try to find lowest cost 6 links for LISA-like mission
- Benefits of 6 links
 - o Instantaneous/continuous polarization information
 - Sagnac enables noise estimation
 - Redundancy: tolerates loss of up to 2 links while still doing science


• SGO-Mid differs from LISA by:

- Arm length reduced from 5 to 1 Gm
- Mission length reduced from 5 to 2 years.
- Starting distance from Earth reduced by ~2.5X to a 9-degree trailing orbit.
- Telescope diameter reduced from 40 to 25 cm
- Laser power out of telescope reduced from 1.2 to 0.7 W (end of life).
- In-field guiding instead of articulating optical assembly

GW Workshop Linthicum, MD

No ITAR protected information

Dec 20-21, 2011

SGO-Mid Science

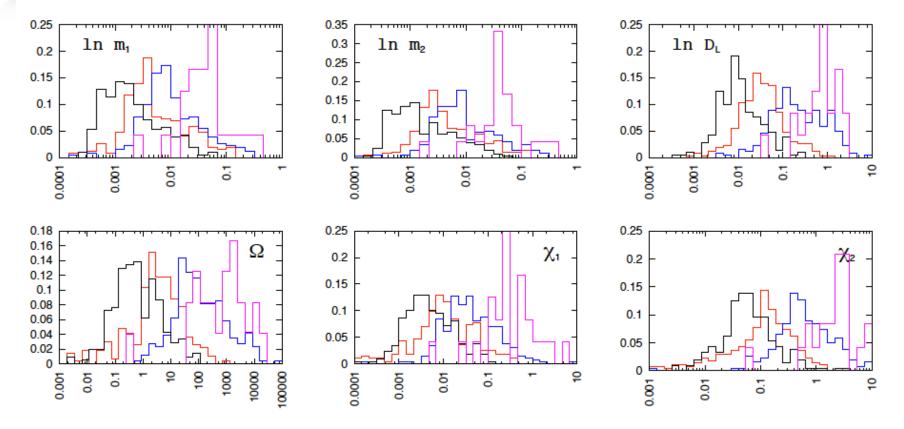
Comparison of Science Performance for different versions of SGO					
	SGO High	SGO Mid	SGO Low	SGO Lowest	
Compact Binaries					
# Verification binaries	10	8	7	0	
# Resolvable binaries	$\sim 20,000$	$\sim 4,000$	$\sim 2,000$	~ 100	
MBH mergers					
# Detections	~ 150	~ 35	~ 30	~ 5	
Mass Measurement Accuracy	$\frac{\sigma_M}{M} \sim 0.1\%$	$\frac{\sigma_M}{M} \sim 0.3\%$	$\frac{\sigma_{M}}{M} \sim 0.3\%$	$\sim 3\%$	
Spin Accuracy	$\sigma \chi \sim 1\%$	$\sigma\chi\sim 3\%$	$\sigma \chi \sim 10\%$	$\sigma\chi\sim 60\%$	
Distance Accuracy @ z=1	$\frac{\sigma_{D_L}}{D_L} \sim 3\%$	$\frac{\sigma_{D_L}}{D_L} \sim 5\% tbc$	$\frac{\sigma_{D_L}}{D_L} \sim 20\% tbc$	$\frac{\sigma_{D_L}}{D_L} \sim 60\%$	
Angular Resolution	$\sim 1^{\circ}$	$\sim 3^{\circ}$	$\sim 10^{\circ}$	$\sim 30^{\circ}$	
EMRIs					
# Detections	\sim 3800, to $z\sim1.0$	$\sim 200,$ to $z\sim 0.2$	$\sim 40,$ to $z\sim 0.15$	0	
Mass Accuracy	$\frac{\sigma_M}{M} \sim 0.01\%$	$\frac{\sigma_{M}}{M} \sim 0.01\%$	$\frac{\sigma_M}{M} \sim 0.01\%$	-	
MBH Spin Accuracy	$\sigma \chi \sim 0.01\%$	$\sigma\chi\sim 0.01\%$	$\sigma \chi \sim 0.01\%$	-	
Discovery Space					
Detects early-universe Ω_{gw}	$\gtrsim 10^{-10}$	$\gtrsim 10^{-9}$	-	-	
Can Detect+Verify Bursts?	 ✓ 	✓	-	-	

Covers decadal-endorsed science

• Generally detects fewer sources of all types

• Main science risk is shortened mission duration

- Event rates uncertain
- Science return lower if event rates are lower


GW Workshop Linthicum, MD

No ITAR protected information

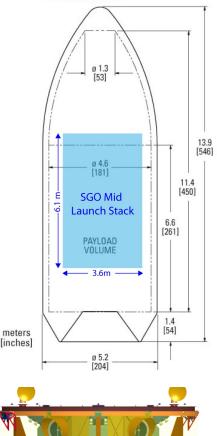
Parameter Estimation

Massive BHs, LISA-like missions

SGO hi SGO mid SGO lo SGO lowest


Similar detection numbers, but each descope \times 3-10 loss in resolution

GW Workshop Linthicum, MD


No ITAR protected information

SGO-Mid Configuration

- Small telescope means optical bench sets height
- In-field guiding simplifies optical assembly
- Launch stack fits easily into a Falcoln 9 fairing
- drift away orbit requires little fuel, simplifying prop module

Scientific Payload

Orbits/trajectory

- 2 year drift-away
 - ~ 6 deg/year drift rate starting at 9 degrees
 - 2 year end of mission similar to nominal SGO-high orbital station
 - Communications requirements similar to SGO-high

Stable constellation

- $-\Delta L/L \sim 0.06$
- $-\Delta \alpha \sim 0.6^{\circ}$
- $-\Delta v \sim 2 m/s$

18 month trajectory

– Optimized $\Delta V \approx 130$ m/s (each)

Cost Estimate

SGO High Estimate	\$1.66 B
Launch vehicle savings	-\$0.03
Payload mass/redundancy reduction	-\$0.11
Mission duration reduction	-\$0.12
SGO Mid Total	\$1.40 B

- Cost model includes
 - Non-recurring Engineering costs
 - "learning curve" for multiple copies
 - 20% additional management reserves
 - Scaling with mission lifetime
- Scaling rates for NRE, learning curve based on
 - Spacecraft/Vehicle-Level Cost Model
 - NASA/Air Force Cost Model