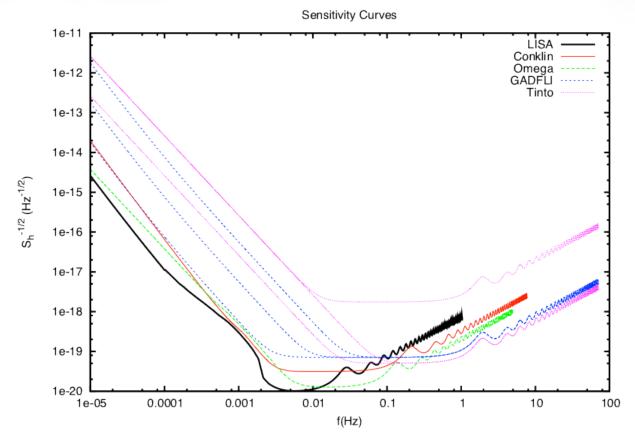


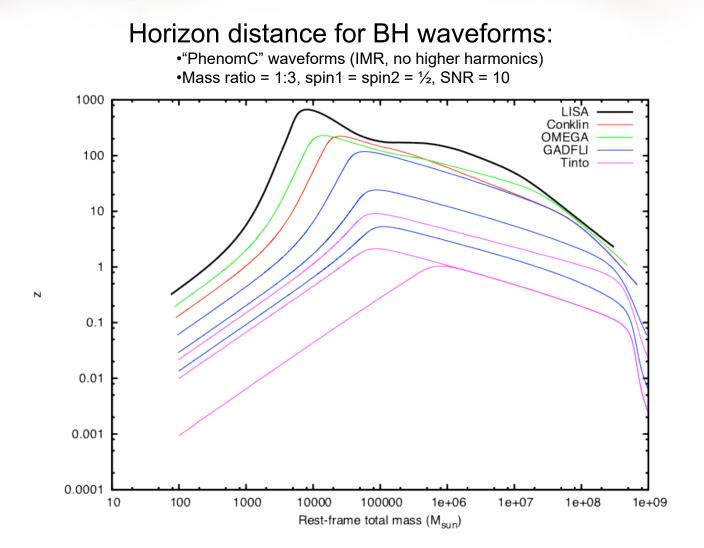
RFI Group 2: Geocentric Mission Concepts

Ira Thorpe – NASA/GSFC For the Group #2 Evaluation Team Tyson Littenberg Bob Spero Gary Welter Pete Bender Jeff Livas Tuck Stebbins


Group 2 Mission Concepts

Acronym	Lead Author	Concept	Arm Length (Mkm)	Duration (yrs)	# alternates
GEOGRAWI	Tinto	Triangle from 3 geostationary SC, spherical proof mass	0.07	2?	3
GADFLI	McWilliams	Triangle from 3 geostationary SC	0.07	2	3
OMEGA	Hellings	6 micro-SC in 600,000km Earth- Moon orbit	1.04	3	1
LAGRANGE	Conklin	3 SC in Earth-Moon L3,L4,L5 Single optical bench, spherical proof mass	0.67	5	1

Sensitivity Curves

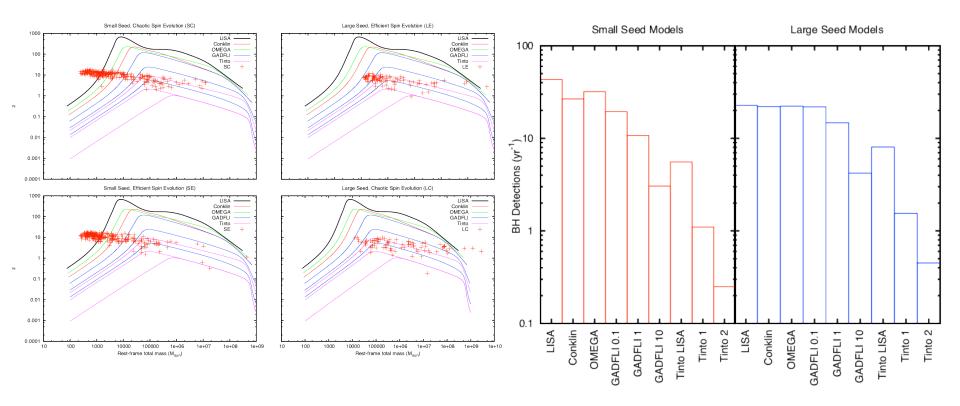


*NOTE: These curves are taken directly from the RFI. Ongoing attempts to reconcile them with calculated curves indicate their may be some significant discrepancies.

BH Science I

NWNH: *Measurements of BH mass and spin will be important for understanding the significance of mergers in the building of galaxies.*

BH Science 2


NWNH: Measurements of BH mass and spin will be important for understanding the significance of mergers in the building of galaxies.

BH Detection Rates

•Convolve horizon with population models (SC,SE,LC,LE)

•S = Small Seeds, L = Large Seeds, C = Chaotic Spin Evolution, E = Efficient Spin Evolution

•Detections "come with" precision measurements of mass and spin

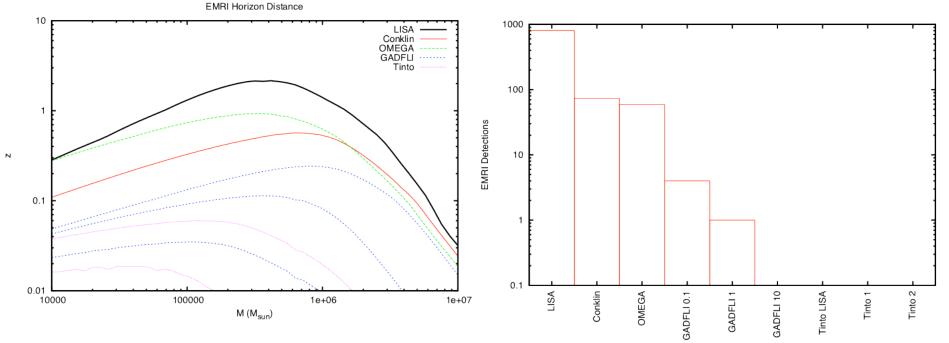
EMRI Science

NWNH: Detections of signals from EMRIs would provide exquisitely precise tests of Einstein's theory of gravity.

Horizon distance for EMRIs:

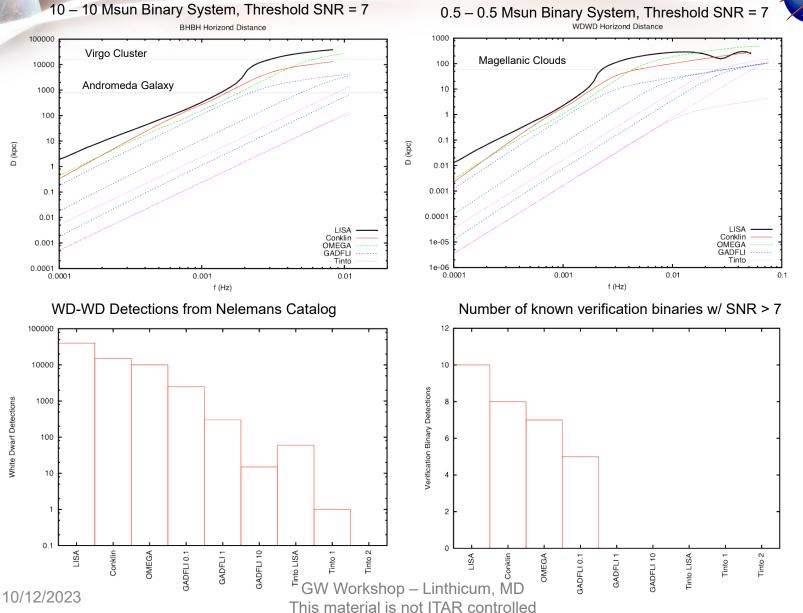
Barack-Cutler waveforms

•10 Msun compact object, eccentricity = 0.5,


2 years before plunge

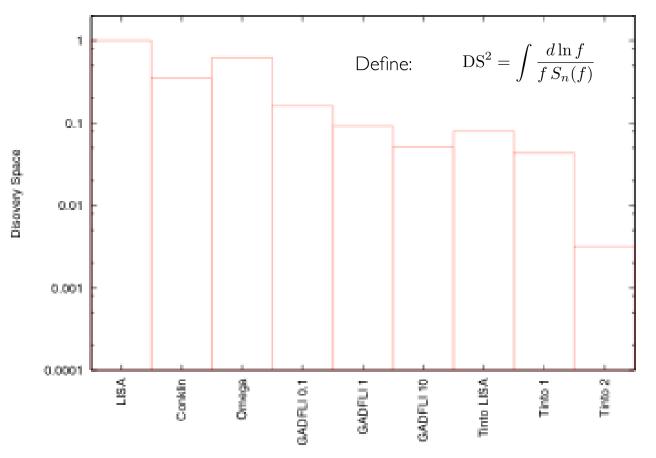
•Central black hole with spin = $\frac{1}{2}$, Threshold SNR = 15.


ENDULIArian Distance


Total # of detections over mission lifetime:

Observation times: 5 yrs (Conklin), 3 yrs (OMEGA), 2 yrs (GeoStationary)
EMRI population a (conservative) variant of Class.Quant.Grav. 21 (2004) S1595-S1606

Galactic Binary Science


Discovery Space

NWNH: Potential for discovery of waves from unanticipated or exotic sources.

Discovery Space

•Measure of volume of signal space accessible to discover: •Normalized by LISA volume

10/12/2023

Science Summary

• NWNH identified goals:

- All concepts will provide some information on mass & spin of MBH. Event rates are higher with OMEGA & LAGRANGE and higher SNR should also improve parameter estimation
- OMEGA & LAGRANGE have high probability of detecting EMRIs.
 It is not likely GEOGRAWI or GADFLI will detect EMRIs.
- OMEGA & LAGRANGE have a discovery volume 3-10x larger than GEOGRAWI or GADFLI

• Other LISA Science (Galactic Binaries)

- All concepts detect compact binaries
- No verification binaries with GEOGRAWI or GADFLI

OMEGA and LAGRANGE concepts significantly out-perform the geostationary concepts in all science metrics

Orbits

Concept	Arm variation (%)	Interior Angle variation (deg)	Range Rate (m/s)
GEOGRAWI/GAD FLI	.02	.02	1
OMEGA	.1	12	160
LAGRANGE	.05	5 (20)	150 (360)
SGO-High	.01	0.8	13

- GEOGRAWI/GADFLI provide a much more stable constellation.
- Station keeping needed for LAGRANGE
- 6-SC design of OMEGA mitigates interior angle change
- Single-bench design of LAGRANGE exacerbates interior angle change

Mission Design

Concept	LV C3 (km/s) ²	PM Δv (m/s)	Cruise duration (months)
GEOGRAWI/GAD FLI	-9.0	1	4
OMEGA	-1.6	500	13
LAGRANGE	-1.7	800	7-9
SGO-High	0.3	1100	14

- GEOGRAWI/GADFLI orbits are less costly to reach than OMEGA/LAGRANGE
- GEOGRAWI/GADFLI may be able to use micro-thrusters for orbit insertion
- GEOGRAWI/GADFLI also require de-orbit or boost into graveyard orbit after science operations. May still require PM

Sun Angle & Eclipses

Concept	In-plane Orbital Period (days)	Annual solar elevation change (deg)	Biannual Eclipse Season Duration (days)	Eclipses / Season
GEOGRAWI/ GADFLI	1	23.5	40	120
OMEGA	55	5	14	0.75
LAGRANGE	30	5	21	2

- Thermal fluctuation period compared with measurement band
- Loss of signal during eclipse & recovery time
- There will be an "exposure season" centered in the eclipse season when the Sunlink angle becomes small. This will require some mitigation strategy.

Technology Development

Gravitational Reference Sensor

- GADFLI baselines LPF GRS, highest TRL within group
- GEOGRAWI & LAGRANGE baseline spherical proof mass, technology development effort needed to raise TRL
- OMEGA baselines modified ONERA accelerometer. Concern that LPF GRS (37kg) may not fit in mass budget (80kg SC)
- Sun filter
 - ALL of these concepts require a strategy to mitigate Sun pointing events.
 - OMEGA specifies a filter that appears to meet optical performance. Concern with scaling to large size and maintaining pathlength stability.
 - Other strategies could be a shutter or re-pointing

Micro-Thrusters

- Station-keeping for LAGRANGE
- Orbit insertion and decommissioning for GADFLI/GEOGRAWI
- Low mass, power, volume for OMEGA

Risk Pro/Cons

• OMEGA

- Con: Aggressive use of micro satellite architecture. May preclude heritage from LPF due to size/mass.
- Pro: 6 SC arrangement provides redundancy

• LAGRANGE:

Con: Single proof mass per SC and redundancy

A majority of group members support recommending OMEGA as the Group 2 concept to undergo a Team-X study.

A dissenting minority recommended LAGRANGE