OMEGA

-

COST

OMEGA Cost Rollups

		FY98 \$M		
WBS #	Activity	Aerospace Parametric	JPL Grassroots	
	Phase A	0.3	0.3	
	Phase B	2.3	distributed	
10000	Project management	5.1	5.9	
20000	Science	8.6	9.8	
30000	Project & Mission Eng.	8.7	5.5	
40000	Instrument	25.0	25.0	
50000	Spacecraft Bus	40.3	39.9	
60000	ATLO	2.8	2.7	
70000	Mission Operations	9.1	11.8	
80000	Launch Vehicle	32.1	32.1	
	Sub Total	133.8	133.0	
90000	reserves	18.7	20.2	
	TOTAL	152.6	153.2	

OMEGA Cost Rollups

		FY12 \$M		
WBS #	Activity	Aerospace JPL Parametric Grassro		
	Phase A	0.4	0.4	
	Phase B	3.2	distributed	
10000	Project management	7.0	8.1	
20000	Science	11.9	13.5	
30000	Project & Mission Eng.	12.0	7.6	
40000	Instrument	34.5	34.5	
50000	Spacecraft Bus	55.6	55.0	
60000	ATLO	3.9	3.7	
70000	Mission Operations	12.5	16.3	
80000	Launch Vehicle	44.3	44.3	
	Sub Total	184.5	183.4	
90000	reserves	25.8	27.9	
	TOTAL	210.4	211.3	

OMEGA MIDEX Costing History

- JPL non-advocate MIDEX cost review
- Second JPL non-advocate MIDEX cost review
 Delta II - \$46M SELVS II-B - \$32M
- MIDEX TMCO cost analysis:

"Exclusive of the launch vehicle cost problem, and assuming that the drag-free technology is proven by some other means such as ODIE, the OMEGA costs seem reasonable."

OMEGA Demonstration International Explorer

OMEGA MIDEX Costing

Uhuru GRE FUSE MAS

"reasonable" because there have been many successful explorer-class missions

COBE WISE Swift

The "normal" path to new astronomies in NASA begins with an explorer mission.

RISK

- No scientist wants to fly a mission that risks failure
- But missions sometimes fail even big expensive missions G_{alileo} G_{alileo} Hubble Space Telescope G_{alileo} Mars Observer
- One hedge against mission failure is redundancy

Class	Parts	Redundancy	Incremental Cost
Α			
С			

Class	Parts	Redundancy	Incremental Cost
A	Space-qualified	No single- point failures	
С			

Class	Parts	Redundancy	Incremental Cost
A	Space-qualified	No single- point failures	
С	Mil-spec, space- qualifiable	Selected redundancy	

Class	Parts	Redundancy	Incremental Cost
A	Space-qualified	No single- point failures	
С	Mil-spec, space- qualifiable	Selected redundancy	\$1

Class	Parts	Redundancy	Incremental Cost
A	Space-qualified	No single- point failures	\$2.50
С	Mil-spec, space- qualifiable	Selected redundancy	\$1

• OMEGA has two probes at each vertex of the detector

	3 Class A		6 Class C	
Failure type	Probes lost	Mission lost?	Probes lost	Mission lost?
Irrecoverable fatal design flaw	3	Yes	6	Yes
Recoverable fatal design flaw	1	Yes	1	No
Spacecraft-fatal random failure	1	Yes	1	No
Subsystem random failure	0	No	1	No

OMEGA provides Class A mission reliability using Class C spacecraft

Why Six OMEGA Probes?

- Redundancy
- Cost:
 - one set of non-recurring engineering costs
 - standard discounts for multiple builds
- No major moving parts
- Continuous smooth pointing

Orbit Stability

• OMEGA orbits are long-term stable \Rightarrow Extended mission

- OMEGA orbits are long-term stable \Rightarrow Extended mission
- Orbit analysis gives $\dot{L} \Box 53 \text{m/s} \Rightarrow \Delta v = \pm 50 \text{ MHz}$ Doppler

- OMEGA orbits are long-term stable \Rightarrow Extended mission
- Orbit analysis gives $\dot{L} \Box 53$ m/s $\Rightarrow \Delta v = \pm 50$ MHz Doppler
- So we design for it

- OMEGA orbits are long-term stable \Rightarrow Extended mission
- Orbit analysis gives $\dot{L} \Box 53 \text{m/s} \Rightarrow \Delta v = \pm 50 \text{ MHz}$ Doppler
- So we design for it

Sun Filter

The problem

The problem

The problem

Goal: reflect 98% of total insolation / pass 1024±5 nm

The change in optical path length is

 $\delta L = w[(n-1)dw/dT + dn/dT]\delta T \equiv wG\delta T$

W

The change in optical path length is

 $\delta L = w[(n-1)dw/dT + dn/dT]\delta T \equiv wG\delta T$

We use a glass (*e.g.*, Schott AK51) with $G = \pm (2) \times 10^{-7}$

The change in optical path length is

 $\delta L = w[(n-1)dw/dT + dn/dT]\delta T \equiv wG\delta T$

We use a glass (*e.g.*, Schott AK51) with $G = \pm (2) \times 10^{-7}$

We isolate the filter so that its temperature is determined by insolation balance only, *i.e.*

$$\delta T = \frac{T}{4} \alpha \frac{\delta P_{\text{abs}}}{P_{\text{abs}}}$$

Absorptivity of the filter

For fluctuations in insolation at 1 mHz, $\frac{\delta P_{abs}}{P_{abs}} = 0.001 \text{Hz}^{-1/2}$

For fluctuations in insolation at 1 mHz, $\frac{\delta P_{abs}}{P_{abs}} = 0.001 \text{Hz}^{-1/2}$

 α = 2% and the temperature of the spacecraft is 240K, so

$$\delta T = \frac{240\text{K}}{4} (0.02)(0.001 \text{ Hz}^{-1/2}) = 1.2 \times 10^{-3} \text{ K/Hz}^{1/2}$$

For fluctuations in insolation at 1 mHz $\frac{\delta P_{abs}}{P_{abs}} = 0.001 \text{Hz}^{-1/2}$

 α = 2% and the temperature of the spacecraft is 240K, so

$$\delta T = \frac{240 \text{K}}{4} (0.02)(0.001 \text{ Hz}^{-1/2}) = 1.2 \times 10^{-3} \text{K/Hz}^{1/2}$$

and the variation in the optical path length in 2 cm of glass is

$$\delta L = (0.02 \text{m})(2 \times 10^{-7} \text{ K}^{-1})(1.2 \times 10^{-3} \text{ K/Hz}^{1/2}) = 4.8 \text{ pm/Hz}^{1/2}$$

For the slow absorption of the total insolation,

 $\frac{\delta P_{\rm abs}}{P_{\rm abs}} = 1$

For the slow absorption of the total insolation,

 $\frac{\delta P_{\rm abs}}{P_{\rm abs}} = 1$

The orbital-period change in the sun filter temperature is

$$\delta T = \frac{240\mathrm{K}}{4}(0.02)(1) = 1.2\mathrm{K}$$

For the slow absorption of the total insolation,

 $\frac{\delta P_{\rm abs}}{P_{\rm abs}} = 1$

The orbital-period change in the sun filter temperature is

$$\delta T = \frac{240\mathrm{K}}{4}(0.02)(1) = 1.2\mathrm{K}$$

and the change in optical path length through the filter is

$$\delta L = (0.02 \text{m})(2 \times 10^{-7} \text{ K}^{-1})(1.2 \text{ K}) = 4.8 \text{ nm}$$

The ability to model and then high-pass filter this signal below 10⁻³ Hz may be tested in the laboratory.

OMEGA

Montana State Ron Hellings Neil Cornish

> UT-Brownsville Matt Benacquista

Washington University Ryan Lang Utah State University Science Shane Larson Engineering – SDL Scott Jensen Chad Fish

OMEGA Microprobe Layout

OMEGA Optical Bench Layout

OMEGA Carrier Inside the Delta Fairing

SYNTHESIZER

F. M. Cady EF-CpE Montana State University 8/28/97

OSCAR Exploded View

