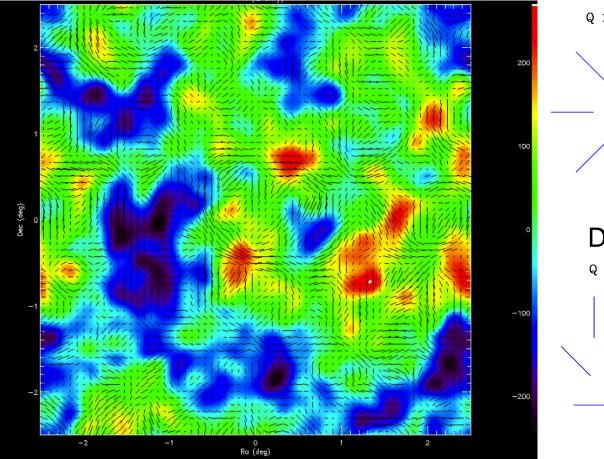
CMB (Polarization) Science in the Next Decade and Report from the IPSAG

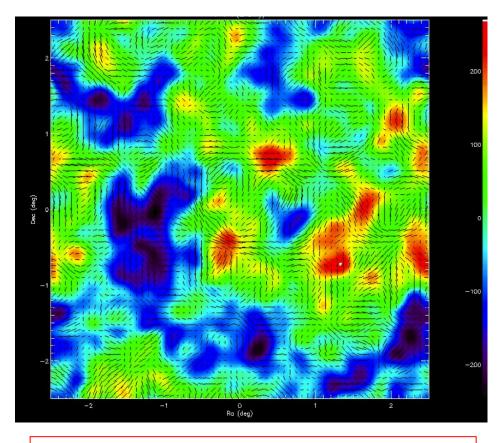
Shaul Hanany University of Minnesota


With input from

The Inflation Probe Science Analysis Group The EPIC-IM Mission Study Team

CMB Polarization: E and B Modes

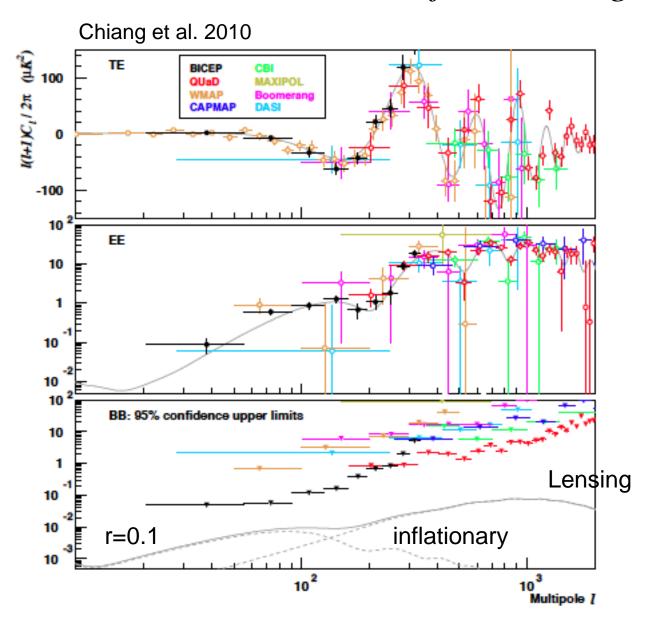
Simulated Map of Temperature Anisotropy and Polarization


Q < 0 U = 0 $Q > 0 \quad U = 0$ E < 0E > 0Divergence Free B mode Q = 0 U < 0Q = 0 U > 0 $B \underset{\pi}{>} 0$ B < 0

Curl Free E-Mode

Bars indicated polarized intensity and orientation

Significance of E and B Modes



"The convincing detection of Bmode polarization in the CMB ... would represent a watershed discovery." (from New Worlds, New Horizons)

- Inflation produces density perturbations + gravitational waves
- Density perturbations produce E mode <u>only</u>; Gravitational waves produce both E,B polarization patterns
- Only gravity waves produce B-mode polarization
- Detection (or constraint) on Bpolarization is direct signature (or constraint) on Inflation

Current State of Knowledge

- Tensor to
 Scalar ratio r
- Current limit: r<0.24 (95%)

Note: Results from the QUIET experiment (not shown) agree with other available data. Funded US Sub-Orbital Polarization Experiments

Experiment	Resolution (')	Frequency (GHz)	Number of Detector Pairs		
Balloon-Borne					
EBEX	8	150 / 250 / 410	398 / 191 / 141		
PIPER	21 / 15 / 14 / 14	200 / 270 /350 /600	2560 / 2560 / 2560 /2560		
SPIDER	60 / 40 / 30	96 /145 /225	288 / 512 / 512		
Ground-Based					
ABS	30	150	200		
ACTPol	2.2 / 1.4 / 1.1	90 / 145 / 217	~1000		
BICEP2	37	150	256		
CLASS					
KeckArray	55 / 37 / 26	100 / 150 / 220	288 / 512 / 512		
Polarbear	7 / 3.5 / 2.4	90 / 150 / 220	637		
SPTPol	1.5 / 1.2 / 1.1	90 / 150 / 225	~1000		

24

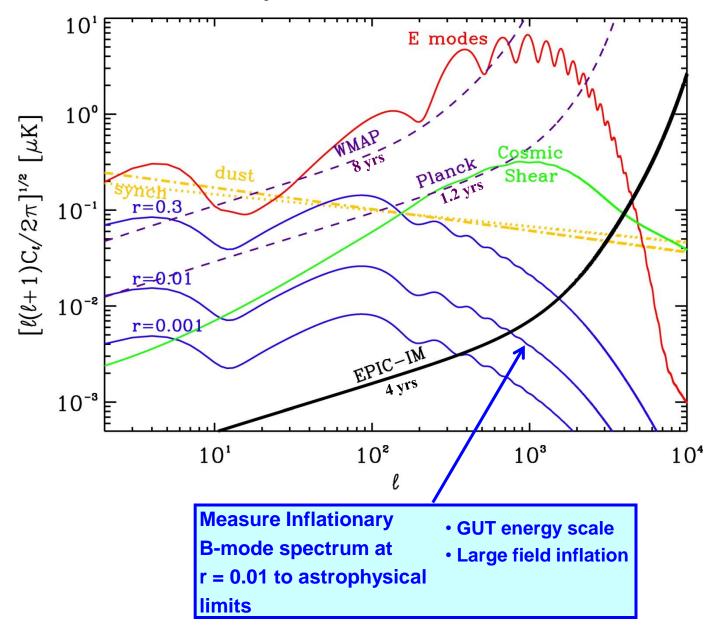
Funded US Sub-Orbital Polarization Experiments

Experiment	Resolution (')	Frequency (GHz)	Number of Detector Pairs
			and the second second
EBEX	8		-
PIPER	21	POD TATATAN	100 15980110A
SPIDER	60		
		20	
ABS	30		
ACTPol	2.2		
BICEP2	37	A	
CLASS			
KeckArray	55		
Polarbear	7/	Electron Contraction	
SPTPol	1.5		

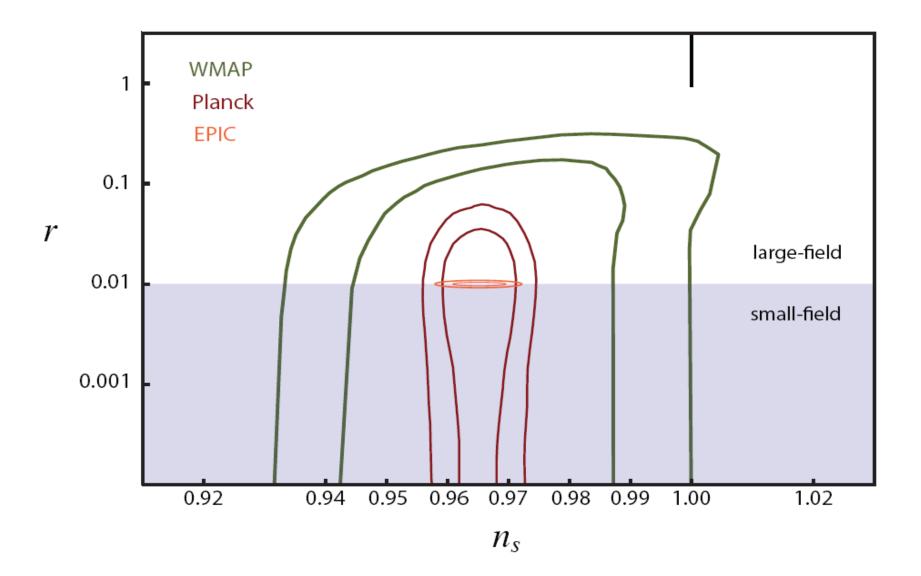
Funded US Sub-Orbital Polarization Experiments

Experiment	Resolution (')	Frequency (GHz)	Number of Detector Pairs		
Balloon-Borne					
EBEX	8	150 / 250 / 410	398 / 191 / 141		
PIPER	21 / 15 / 14 / 14	200 / 270 /350 /600	2560 / 2560 / 2560 /2560		
SPIDER	60 / 40 / 30	96 /145 /225	288 / 512 / 512		
Ground-Based					
ABS	30	150	200		
ACTPol	2.2 / 1.4 / 1.1	90 / 145 / 217	~1000		
BICEP2	37	150	256		
CLASS					
KeckArray	55 / 37 / 26	100 / 150 / 220	288 / 512 / 512		
Polarbear	7 / 3.5 / 2.4	90 / 150 / 220	637		
SPTPol	1.5 / 1.2 / 1.1	90 / 150 / 225	~1000		

A Healthy Variety of Experimental Approaches + Technologies Target r: ~0.05 ; Time scale: <= 2015

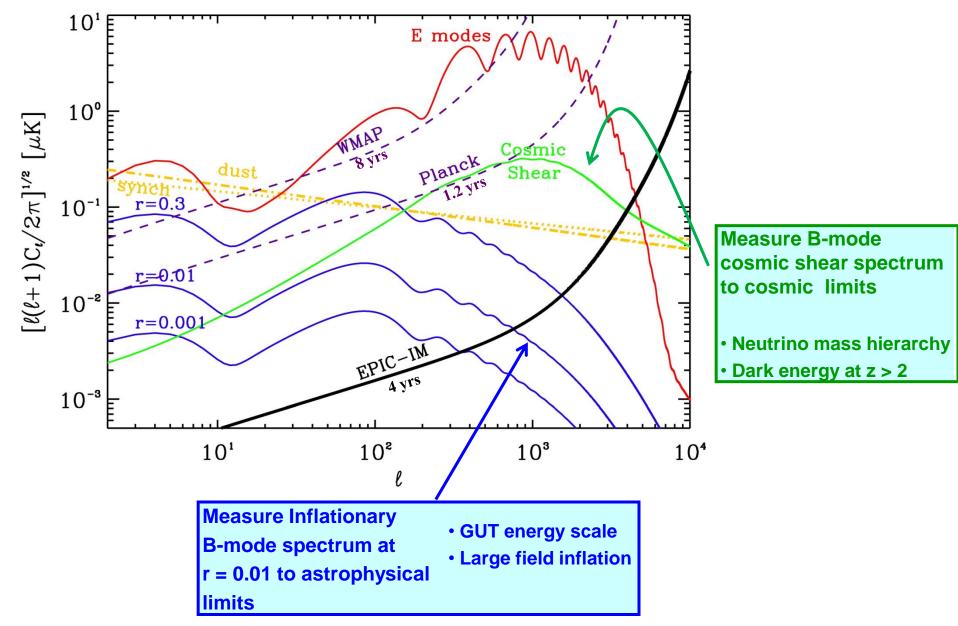

EPIC - A Definitive Space Mission

- Will map the entire sky, accessing the largest angular scales that are difficult to get from the ground
- Will give the sensitivity necessary to definitively determine the E, B spectra
- Will have the frequency coverage to suppress foregrounds to required levels
- Will have un-paralleled control of systematic uncertainties

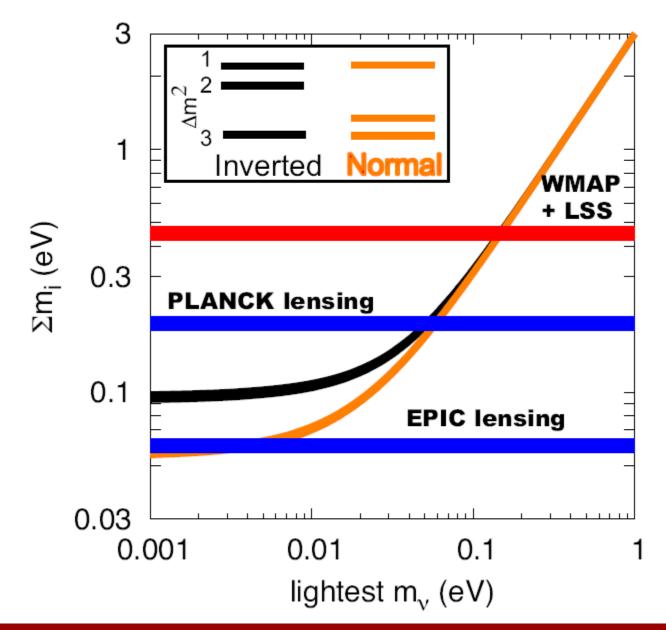


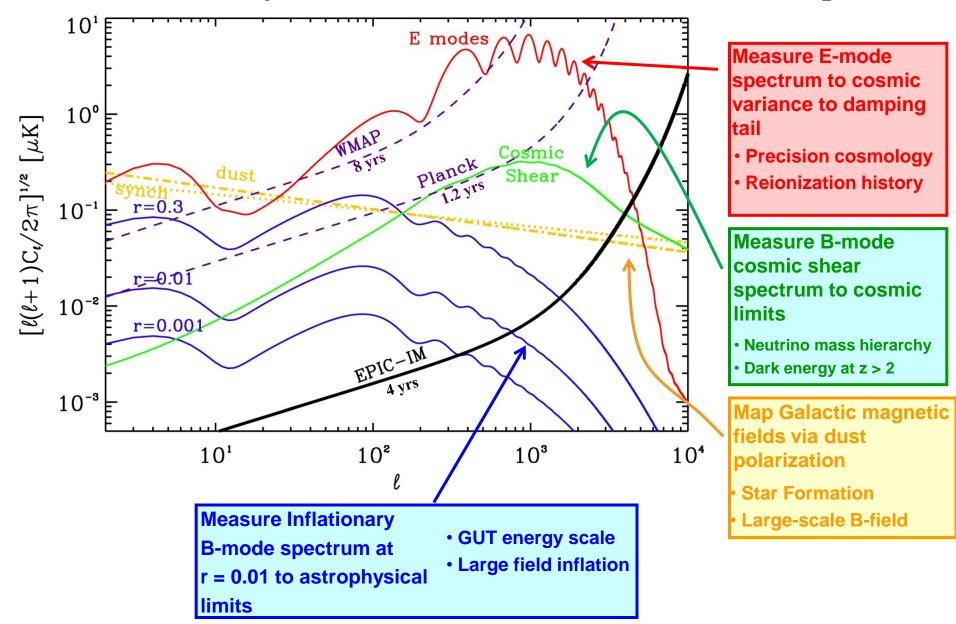
- 11,094 TES or MKID detectors
- 9 frequency bands between 30 and 880 GHz
- Focal plane maintained at 100 mK
- Sensitivity equates to 3500 Planck missions!
- Mass similar to Planck

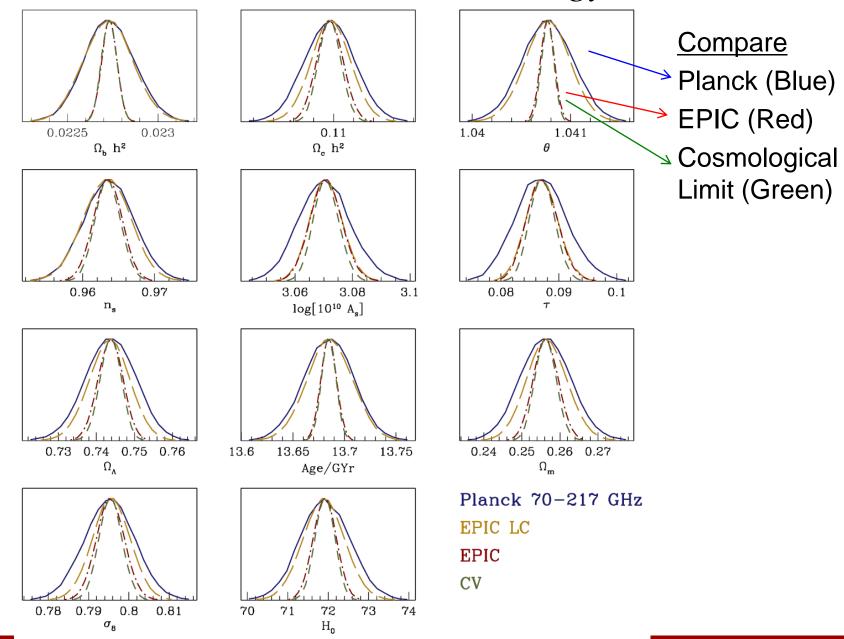
Richness of the CMB Polarization Landscape



Confirm or Reject Large Field Inflation






Neutrino Masses

Richness of the CMB Polarization Landscape

Precision Cosmology

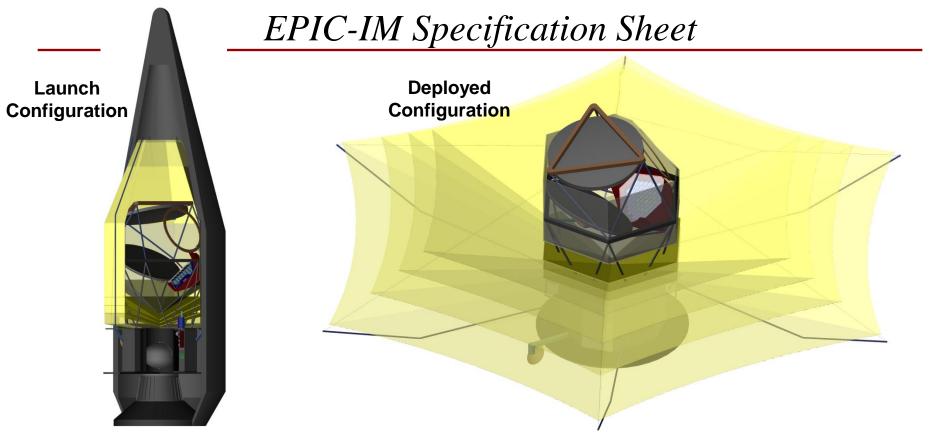
IPSAG Statement of Task

- Review and update mission science goals following current developments in the field (e.g. Planck, sub-orbital measurements),
- Review and update information about and requirements on potential foreground contaminants and their removal,
- Review and update requirements on and developments in control of systematic errors,
- Assess necessary technology developments and prioritize areas for increased technical emphasis.
- The IPSAG work will build upon pre-New Worlds and New Horizons community and agency investments as summarized by reports from NASA's 2009 Strategic Mission Concept Study and white papers submitted to NWNH.

IPSAG Current Status

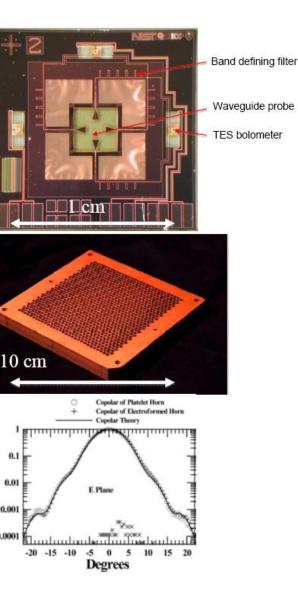
- Dear Colleague letter sent March 10
- To date 40-45 members are signed on (~10 international) <u>http://pcos.gsfc.nasa.gov/sags/ipsag.php</u>
- First Telecon April 21 (~30 participants)
- Telecon Agenda:
 - Background for IPSAG
 - View from HQ
 - View of Program Office and of Advanced Concepts and Technologies Office
 - Summary of pre-decadal activities
 - Status of satellite mission abroad
 - Discussion

- We have a space mission candidate.
- A number of sub-orbital experiments are now implementing various candidate technologies; support for sub-orbitals should continue consistent with NWNH recommendations.
- We have carried out extensive theoretical studies prior to NWNH; more information will come from Planck and the sub-orbital experiments.
- The field is ready to move toward more concrete definition of technical requirements, and toward identifying technology areas of emphasis.
- Some discussion of mid-decade review and how this will work.

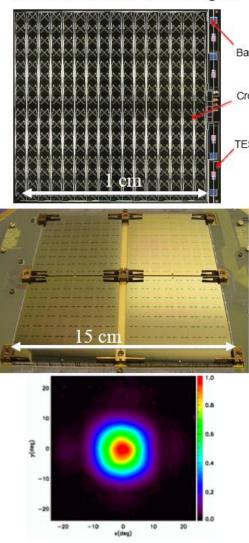

IPSAG: Outcome of First Telecon

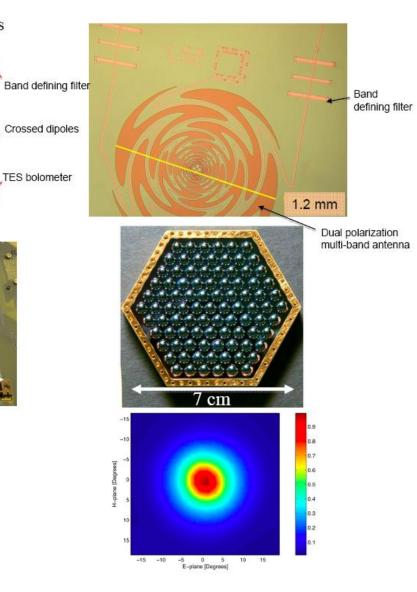
- Work with Office of Advanced Concepts and Technologies to define technology needs for space mission and necessary developments toward it.
- Community reiterates importance of mid-decade review of status.

Back Up Material

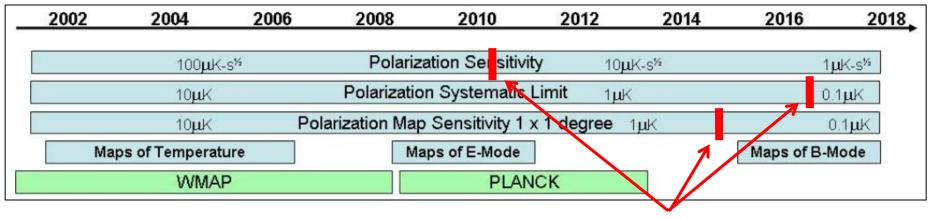


Optics	1.4 m wide-field crossed Dragone	Total Delta-V	170 m/s
Orbit	Sun-earth L2 halo	Payload Power	440 W (CBE)
Mission Life	4 years	Spacecraft Power	533 W (CBE)
Launch Vehicle	Atlas V 401	Total Power	1392 W (w/ 43 % cont.)
Detectors	11094 TES bolometer or MKID detectors	Payload Mass	813 kg (CBE)
Bands	30, 45, 70, 100, 150, 220, 340, 500 & 850 GHz	Spacecraft Mass	584 kg (CBE)
Sensitivity	0.9 mK arcmin; 3600 Planck missions	Total Mass	2294 kg (w/ 43 % cont.)
Spacecraft	3-axis commercial	Vehicle Margin	1287 kg (36 %)
Data Rate	7.7 Mbps	Cost	\$920M FY09


Mass similar to the Planck satellite mission



Technology Commissioning


EPIC Focal Plane Technologies

The Path to CMBPol

Task Force for CMB Research Weiss Report 2005: Projected Timeline

Where we are today

Sub-Orbital Program:

Strong push to detect the inflationary signal by mid decade

Satellite Mission:

A definitive, comprehensive measurement of the CMB Polarization

Funded US Sub-Orbital Experiments

Table 1. Future Suborbital CMB Polarization Experiments.

Table 1. Future Suborbital Civil Folarization Experiments.					
		FWHM	Frequency	Detector	
	Technology	(arcmin)	(GHz)	Pairs	Modulator
US-led balloon-borne:	\bigcirc				
EBEX (Oxley et al., 2004)	TES	8	150/250/410	398/199/141	(HWP)
Spider (Montroy et al., 2006)	TES	60/40/30	96/145/225	288/512/512	HWP/Scan
PIPER I	TES	21/15	200/270	2560/2560	VPM
PIPER II	TES	14	350/600	2560/2560	VPM
US-led ground-based:					
ABS(Staggs et al., 2008)	TES	30	150	200	HWP
ACTpol(Fowler et al., 2007)	TES	2.2/1.4/1.1	90/145/217	~ 1000	Scan
BICEP 2(Nguyen et al., 2008)	TES	37	150	256	HWP/Scan
Keck Array(Nguyen et al., 2008)	TES	55/37/26	100/150/220	288/512/512	HWP/Scan
MBI(Korotkov et al., 2006)	NTD	60	100	4	Int.
Poincare(Chuss, 2008)	TES	84/30/24	40/90/150	36/300/60	VPM
PolarBeaR(Lee et al., 2008)	TES	7/3.5/2.4	90/150/220	637	HWP
QUIET I(Samtleben, 2008)	MMIC	20/10	44/90	~100(1000)	ϕ -switch
SPTpol(Ruhl et al., 2004)	TES	1.5/1.2/1.1	90/150/225	~ 1000	Scan
European-led ground-based:					
BRAIN(Polenta et al., 2007)	TES	60	90/150	256/512	Int.
$C_{\ell}OVER$ (Piccirillo et al., 2008)	TES /	7.5/5.5/5.5	97/150/225	3x96	HWP
QUIJOTE(Rubino-Martin et al., 2008)	HEMT	54-24	10-30	34	HWP

From CMB project paper submitted to Astro2010

A Healthy Variety of Experimental Approaches and Technologies Target r: ~0.02-0.05

Time scale: few years

