

Balloon-borne CMB Experiments to mid-decade and Beyond

William Jones Princeton University

with a great deal of input from the community! Al Kogut, Shaul Hanany, Suzanne Staggs, John Ruhl

Overview

- Heritage of scientific and technical synergy between sub-orbital and orbital programs
- Status of CMB polarization observations
- Prospects for balloon borne missions in the near- and mid-term
- Milestones and future missions

NASA's sub-orbital heritage

 ${\bf Sub-orbital} \; ({\bf balloon} \; {\bf and} \; {\bf ground} \; {\bf based}) \; {\bf programs}$

- Return extremely cost effective science
- Complement the scientific capabilities of orbital missions
- Provide foundational technology development
- Provide a unique training ground for future leaders


NASA

Inflation Probe SAG Workshop ~ 15 August, 2012

NASA's sub-orbital heritage

The overwhelming successes of each of NASA's orbital CMB missions are directly traceable to the heritage of sub-orbital experiments.

"This [the balloon-borne demonstration of receiver technology] provided the confidence and heritage needed to improve the COBE DMR receivers" -George Smoot, Nobel Lecture

NASA

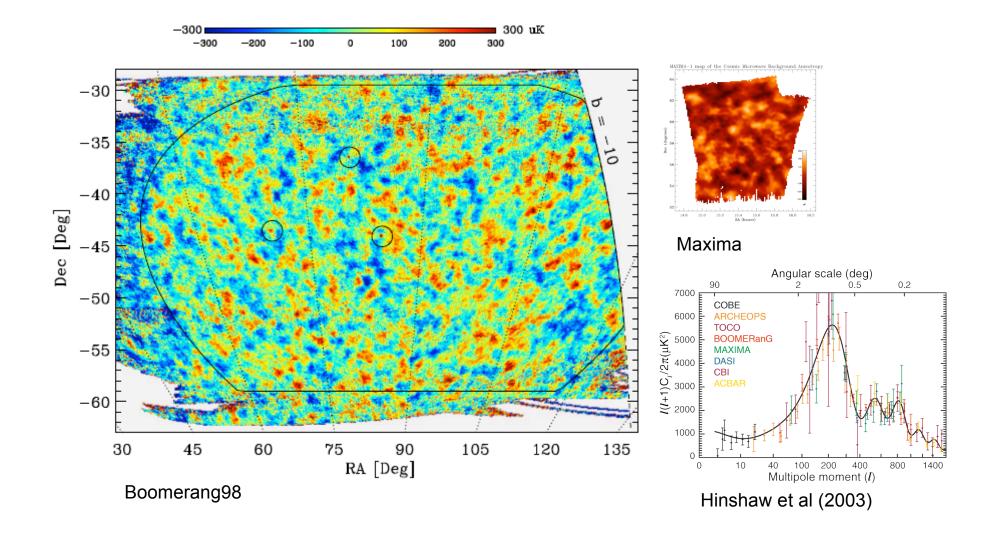
NASA's sub-orbital heritage

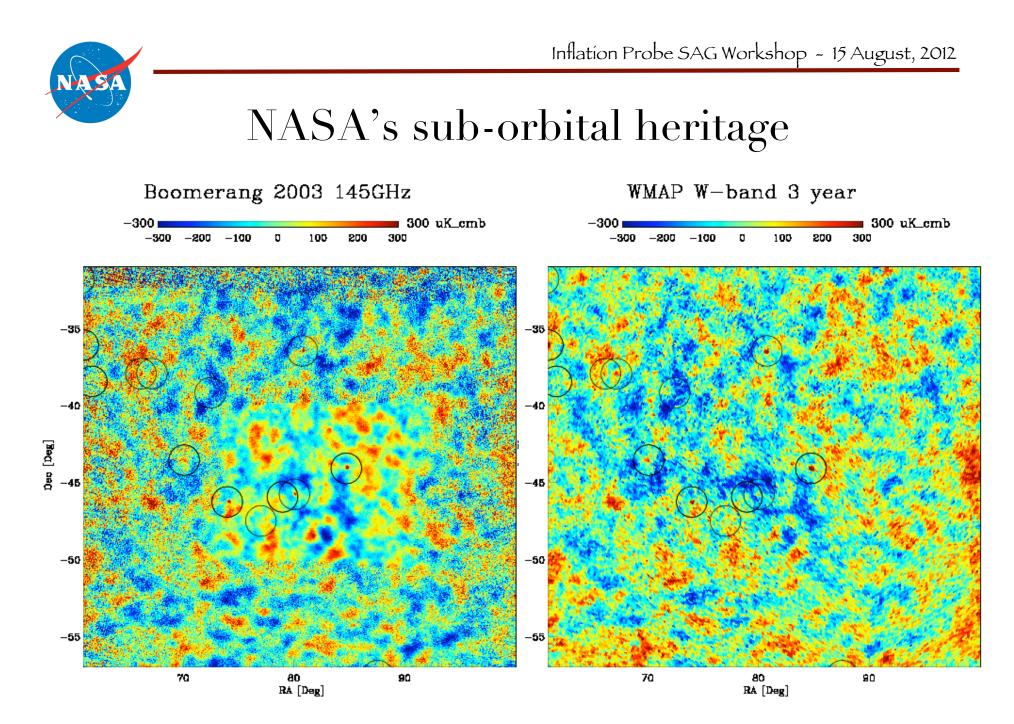
The overwhelming successes of each of NASA's orbital CMB missions are directly traceable to the heritage of sub-orbital experiments.

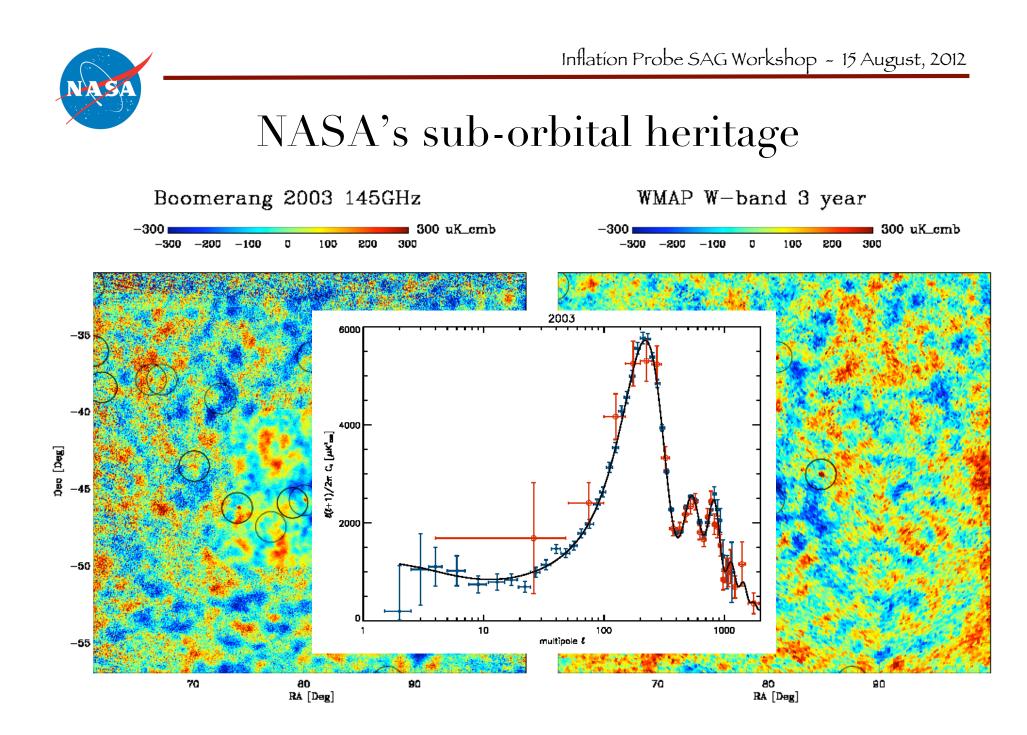
Lubin & Villela [balloon borne technology demonstration]DMRMeyer, Cheng & Page (1991), Ganga et al (1993) [balloon borne data]DMRMather, Woody and Richards, Gush [balloon borne, rocket, technology demonstration]FIRAS

Saskatoon, TOCO [suborbital science and technology demonstration]

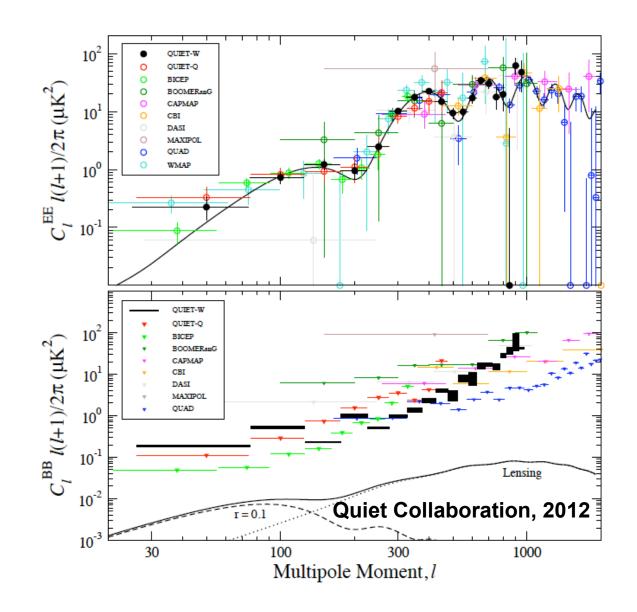
Boomerang, Maxima, Archeops [balloon borne science and technology demonstration]


Ebex, Spider, Piper and GB will lay the groundwork for the Inflation Probe





NASA's sub-orbital heritage



Status of CMB Polarization Observations

Balloon: Boomerang Maxipol Ebex Spider Piper

Ground: DASI CBI QUAD Bicep1/2 CAPMAP QUIET Keck Array ABS PolarBear CLASS

Observational Status

Balloon: Boomerang Maxipol Ebex Spider Piper

Ground:

DASI CBI QUAD Bicep1/2 CAPMAP QUIET Keck Array ABS PolarBear CLASS Balloons are under represented.

- Ballooning is hard
- Flight opportunities are limited
- Atmosphere is largely unpolarized

Why are balloon borne experiments critical?

- Enables broad frequency coverage
- Importance of large scales
- Atmosphere is bright, and $I \rightarrow Q, U$ finite
- Space like backgrounds and environment

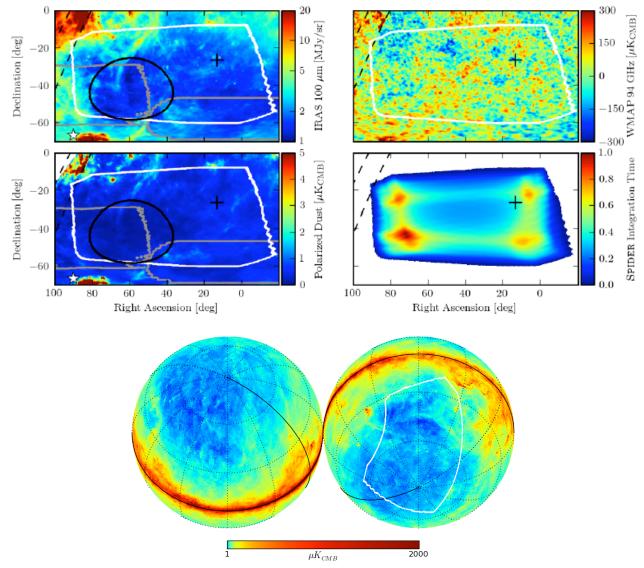
Multipole Moment, l

Quiet Collaboration, 2012

Unbelievably good training ground

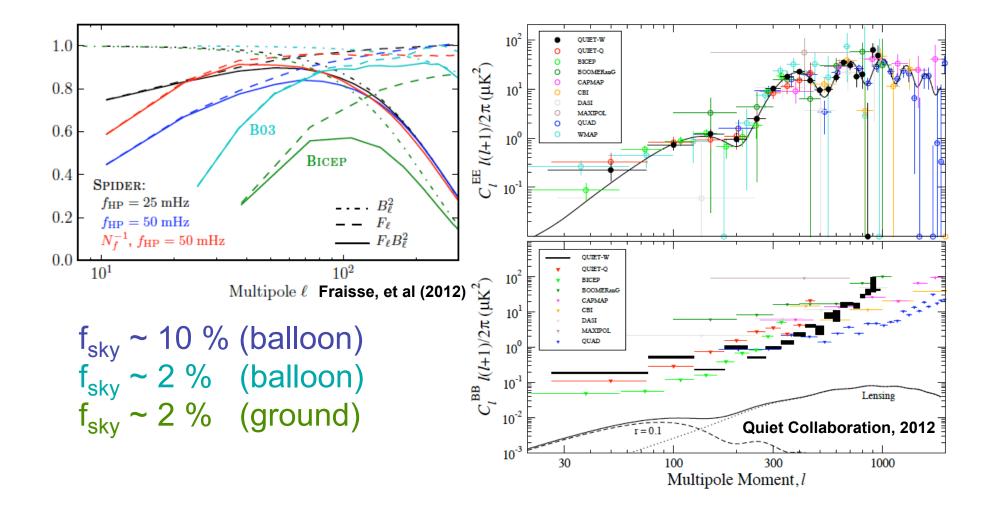
Contemporary Balloon Borne CMB Polarization Experiments

Kogut et al, SPIE 2012


EBEX	Spider	Piper
Resolution 8'	Resolution 40'-20'	Resolution 15'-20'
Sky coverage 1%	Sky coverage 10%	Sky coverage 55%*
Antarctic LDB	Antarctic LDB	Mid-latitude Nights
150-400 GHz	95-220 GHz*	200-600 GHz
1400 detectors	2400 detectors	20400 detectors
Spun broadband HWP	Stepped single λ HWP	$VPM\;(Q\toV)$
Feedhorn/grid TES	Polarized planar array	Bare BUG array / grid
	* 2 flights	*Nearly 100% in two flights

arxiv:1007.3672

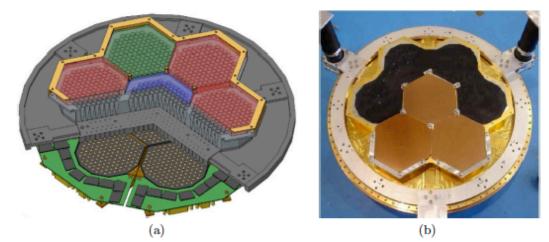
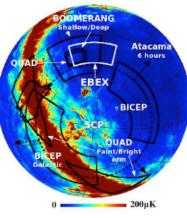
arxiv:1106.3087

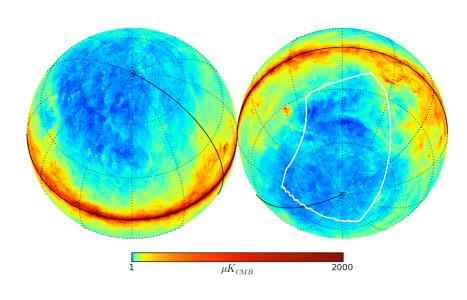


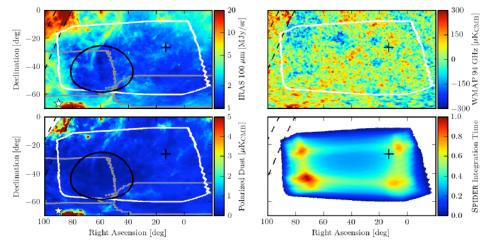
Observational Strategy

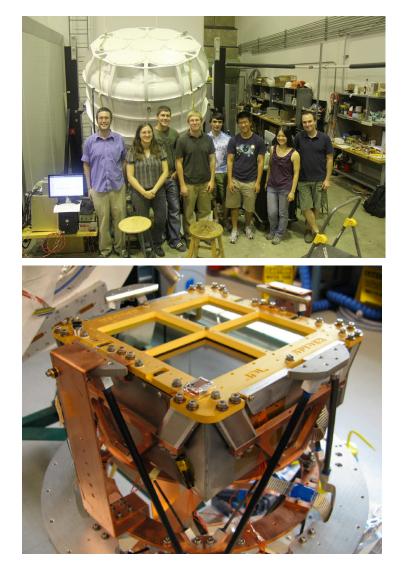
Observational Strategy

Ebex Summary

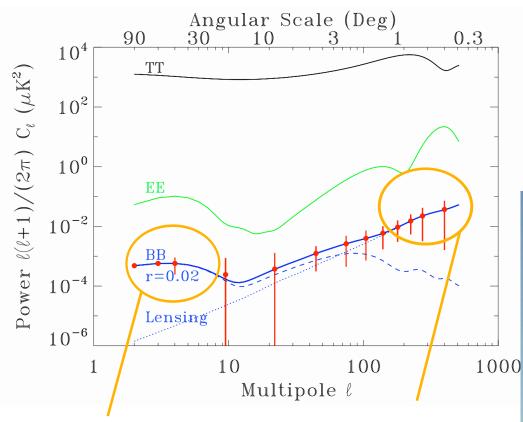




Figure 5. a: Three dimensional CAD drawing of the EBEX focal plane. The colors encode the frequency of the band defining filters; red is 150 GHz, green is 250 GHz, and blue is 410 GHz. b: The partially populated EBEX focal plane in the engineering flight configuration with three TES wafers and band defining metal mesh filters installed.




Nominal Band Frequencies (GHz)	150	250	410
Number of Detectors $(Light)^a$	768	384	280
Beam Size (arcmin)		8	
Error per beam size pixel ^b (μ K) Q/U, T)
Total Sky Coverage (deg^2)	$\sim 1\%$ of the sky		
Flight Duration at $Float^{c}$ (days)	14		

Spider Summary

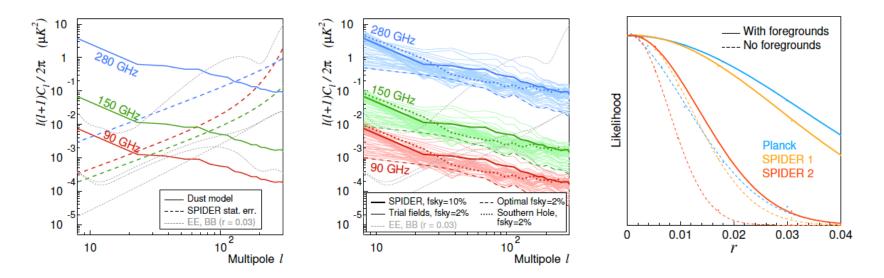


Piper Summary

I < 10: Amplitude of primordial signal I > 200: Amplitude of lensing foreground

First flight scheduled 2013 (Ft Sumner, New Mexico)

Map linear and circular polarization Map large and small scales CMB and dust physics Limit r < 0.007 (95% CL)


Milestones

If the simplest single field Inflation models apply, within 2-5 years

Multiple detections of B-mode power (~ few σ)

- Confirm expected angular spectrum
- Confirm expected electromagnetic spectrum
- Rigorous internal systematic tests
- Demonstration of statistical isotropy

Measure of the polarized fraction of high latitude Galactic emission

Role of the MoO

The potential of balloon-borne missions of opportunity (30-55 M\$) offer several challenges to the community:

Requires a level of project management that is costly (6-10 M\$)

Requires a degree of project management discipline that may be incompatible with the student-driven culture of the balloon community - perhaps threatens the valuable role of developing talent

Increased budget is offset by margins and higher overhead - it is (fiscally) challenging to structure the support of a broad portion of the community under this budget

Future mission definition

After the current set of sub-orbital experiments return, we will be able to speak sensibly about how future missions (including the Inflation Probe, perhaps MoO) should look:

Angular resolution \rightarrow internal de-lensing necessary?

Frequency coverage \rightarrow close packed, wide throw, how many bands?

Sky coverage \rightarrow about 20% in the two hemispheres

Challenges for the future (and present!)

Experiments are dramatically more complicated than MSAM/Boomerang/Maxima/Tophat

Realistic development timelines extend beyond 5 years (difficult to reconcile with academic timelines, 1M\$/yr budget)

Development costs are growing - 1M\$/yr is not enough to develop detectors and design/build the payloads.

Detector funding has helped to bridge the gap, but the level of funding recommended in the Decadal has not materialized

Ground based programs play a key role, and leverage funding from other agencies.

If the Inflation Probe is to follow in the tradition of COBE, WMAP and Planck (revolutionary science, managed cost/schedule risk), then sustained support of the sub-orbital program is required.

Extra Slides

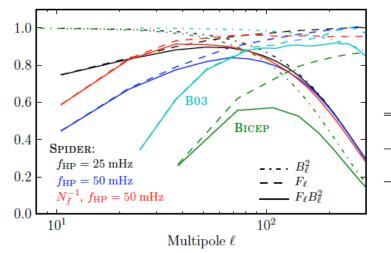


 TABLE 4

 Spider FPU frequency distribution and per-band cumulative noise

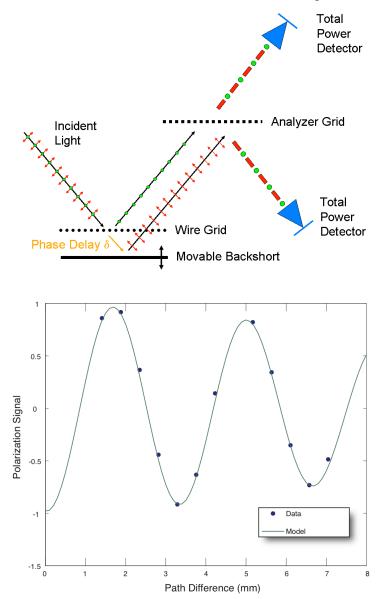
Flight	FPU Distribution	Cumulat 90 GHz	ive Noise (µ 150 GHz	$rac{\mathrm{K_{CMB}/deg}^2}{\mathrm{280~GHz}}$
Spider 1 Spider 2	3×90 GHz; 3×150 GHz 2×90 GHz; 2×150 GHz; 2×280 GHz	$0.27 \\ 0.21$	0.20 0.16	0.62

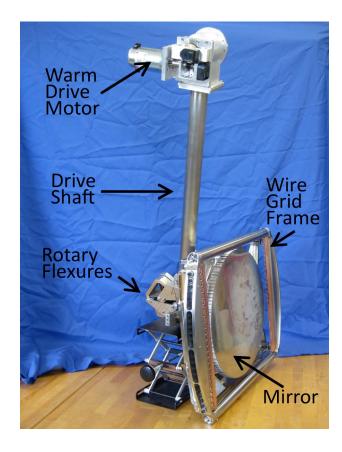
TABLE 1 SPIDER OBSERVING BANDS, PIXEL AND DETECTOR COUNTS, AND SINGLE-DETECTOR AND SINGLE-TELESCOPE FPU SENSITIVITIES

Band Center	Bandwidth	Beam FWHM	Number of	Number of	Detector Sensitivity	FPU Sensitivity
(GHz)	(GHz)	(arcmin)	Spatial Pixels	Detectors per FPU	($\mu K_{CMB}\sqrt{s}$)	($\mu K_{CMB}\sqrt{s}$)
90	22	49	$ \begin{array}{r} 144 \\ 256 \\ 256 \end{array} $	288	150	10
150	36	30		512	150	7
280	67	17		512	380	18

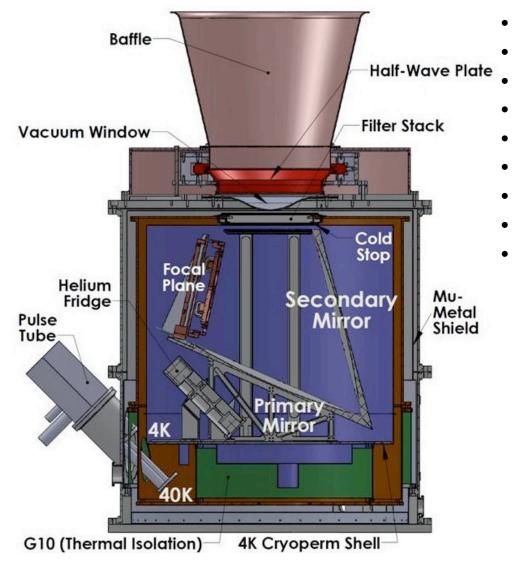
NOTE. — Each FPU sensitivity is obtained by dividing the corresponding single-detector sensitivity by $\sqrt{N_{det}}$, assuming a detector yield of 85%, slightly below the average of the delivered focal planes. The total experimental map depth at each frequency scales inversely as the square-root of the number of FPU-flights for that frequency. The quoted sensitivities at 90 GHz and 150 GHz are our current best estimate based on in-situ measurements of signal and noise using an aperture filling 4 K load. The 280 GHz sensitivity is scaled from the average in-flight sensitivity of BOOMERANG at 245 GHz and 345 GHz.

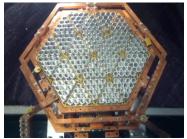
Table 1. Instrument Summary


Property	Band 1	Band 2	Band 3	Band 4
Frequency (GHz)	200	270	350	600
Wavelength (μm)	1500	1100	850	500
Bandwidth $\delta \nu / \nu$	0.30	0.30	0.08	0.07
Beam Width (arc-min)	21	15	14	14
Optical Efficiency	0.30	0.30	0.30	0.15
Detector Absorption	0.90	0.90	0.70	0.50
Bolometer (Phonon) NEP (W $Hz^{-0.5}$)	$3.8 imes 10^{-18}$	$3.8 imes 10^{-18}$	$3.8 imes 10^{-18}$	$3.8 imes 10^{-18}$
Total NEP (W $Hz^{-0.5}$)	4.7×10^{-18}	$5.9 imes 10^{-18}$	5.1×10^{-18}	$7.1 imes 10^{-18}$
Detector Noise (mJy \sqrt{s})	160	147	466	877
Detector NET ($\mu K \sqrt{s}$)	80	80	377	6600
Detector NEQ ($\mu K \sqrt{s}$)	113	113	534	9300
Number of Detectors	5120	5120	5120	5120
Instrument NEQ ($\mu K \sqrt{s}$)	1.6	1.6	7.5	130


· ~ ·

Variable-Delay Polarization Modulator


Measure linear and circular polarization!



Atacama B-mode Search (ABS)

- 240 150-GHz feedhorns
- 480 TES bolometers at 300 mK
- Low foreground parts of sky
- ~ 35 microK rt(s)
- Cold mirrors
- Warm continuously rotating HWP
- Atacama desert: 5100 m elevation
- Target r < 0.03
- Status: taking data!

FOCAL PLANE

