

Detector arrays & focal-plane coupling -

Harvey Moseley

Multiplexing -

Kent Irwin

- What are the key immediate areas for development?
- Where is the technology heading in the near term (<2015) and mid-term (>2015)?

The Inflation Probe Technology Roadmap

Technology	Priority	Timescale	Candidates	TRL
Detector Arrays	High	Sub-orbital experiments	TES+SQUID+Antenna HEMT / MMIC	4-5
Optics	Medium	Sub-orbital experiments	Polarization modulators AR coatings	2-5
Coolers	Low	Develop for space	Passive+mechanical+sub-K	3-9
Advanced Arrays		Develop for simplified space implementation. Connects to X-ray, far-IR and optical astronomy	MKID+RF resonator TES+RF resonator	3

Detector arrays & focalplane coupling Harvey Moseley

> Multiplexing Kent Irwin

CMB Polarization Satellite Mission Concepts

Experimental Probe of Inflationary Cosmology CMB community mission developed for Decadal

- 1.4 m Crossed Dragone Telescope
 - Resolution to measure lensing signal cosmic limits

Large Focal Plane

- equates to 1000 Planck missions!
- Wide band coverage for foregrounds

Cooling system

- 100 mK
- Improved Planck system

L2 Halo Orbit

- Scan strategy for large-scale polarization
- Simple operations, conventional spacecraft

CORE ESA 2010 proposal 1.2 m aperture

Alternative Concepts

LITEBIRD Japanese concept 30 cm aperture

EPIC-Low Cost JPL concept 30 cm apertures

PIXIE SMEX proposal Multi-mode FTS

CMB Polarization Science is Deep and Broad

Detectors for CMB Polarization

- The detection of B-mode polarization of the CMB requires large numbers of high efficiency polarimetric detectors operating at the background limit aganst the CMB.
- Detectors with adequate thermal sensitivity are well developed. The primary technical challenges are to provide highly integrated polarimeters with uniform characteristics in large arrays (~10⁴ detectors)

Primary Detector Requirements

- High optical efficiency
- Polarization sensitivity
- Integrated filtering
 - Uniform across array, adaptable for all required bands
- Beam formation
 - Matching for the two polarization states
 - Uniform across array

Additional Requirements

- Noise characteristics
 - Allowable 1/f corner depends on implementation
- Environmental sensitivity
 - Particle events
 - SEU dead time
 - Parametric changes
 - Sensitivity to experimental parameters
 - Should be logged at required rate and sensitivity

Additional Requirements

- Ease of integration
 - Independently testable integrated focal plane
 - Choices of scales of modularity depend on experimental details
 - Simple electrical interface (microwave multiplexing?)
 - Thermal interfaces may be challenging for large focal surfaces
 - Filtering to limit radiative loads probably easier if telescope is cold

Areas for Immediate Development

- Arrays for current ground based and balloon borne experiments
 - $\sim 10^3$ element
 - SQUID MUX readouts
- Optimization of feed structures and coupling
- Optimization of Detector Production Process
 - Uniformity of parameters across wafer and from run to run

Current CMB Research: Sub-Orbital and Ground-Based

	Experiment	Technology	Resolution (arcmin)	Frequency (GHz)	Detector Pairs	Modulator
US-led Balloon	COFE	HEMT/MMIC	83/55/42	10/15/20	3/6/10	wire grid
	EBEX	TES	8	150/250/410	398/199/141	HWP
	PIPER	TES	21/15/12/7	200/270/350/600	2560	VPM
	SPIDER	TES	60/40/30	90/150/280	288/512/512	HWP
US-led Ground	ABS	TES	30	150	200	HWP
	ACTpol	TES	2.2/1.4	90/145	1500	-
	BICEP2	TES	40	150	256	-
	C-BASS	HEMT	44	5	1	φ-switch
	CLASS	TES	80/34/22	40/90/150	36/300/60	VPM
	Keck	TES	60/40/30	96/150/220	288/512/512	HWP
	POLAR	TES	5.2	150	2000	-
	POLARBeaR	TES	7/3.5/2.4	90/150/220	637	HWP
	QUIET	HEMT/MMIC	42/18	44/90	19/100	φ-switch
	SPTpol	TES	1.5/1.2	90/150	768	-
Int' l Ground	AMiBA	HEMT	2	94	20	Int.
	QUBIC	TES	60	90/150	256/512	Int.
	QUIJOTE	HEMT	54-24	10-30	38	-

- Push to higher sensitivity than Planck: new detector array technologies
- Focused on B-mode science: target small, deep fields
- Explore the diversity of technology approaches
- Test new methodologies for systematic error control
- Expect rapid progress in Inflationary B-mode limits in next few years

Elements of Detector Design

- Optical Coupling
 - Horns, lenslet + antenna, phased array
- Polarization sensitivity
- Microwave circuitry
 - Transmission lines
 - Filters
 - Components Hybrids, etc.
 - Detector coupling
 - Distributed vs lumped

Sensor Arrays

Optical Coupling

Feed Coupled

Planar Antennas

Lens-Coupled Antennas

12

SPTpol 150 GHz

BICEP-2 150 GHz

POLARbear

To reach the sensitivity required for the Inflation Probe, we need

- Polarized detectors with noise below the CMB photon noise (much lower NEP).
- Large frequency coverage with many bands over 30 GHz-1 THz
- Large numbers of detectors (1->10 kpixel)
- Exquisite control of systematics

• The most mature large polarimeter array sensor, the superconducting transition-edge sensor, is now being fielded in ground-based and suborbital experiments.

• Three optical coupling options are being developed and deployed. New work will be required to project the performance of these options in a satellite environment.

• MMICs are also being developed at a lower level

Optical coupling / beam forming

ACTpol feeds

A SA

BICEP-2 phased arrays

POLARbear lenselets

Feedhorn arrays

- Long heritage in flight missions
- Excellent beam symmetry & crosspol
- ACTpol, SPTpol, ABS, CLASS

Phased antenna arrays

- Compact; very low mass, simple
- BICEP-2, Keck, SPIDER, POLAR

Lenselet arrays

- Large bandwidth
- POLARbear

ariable-delay Polarization Modulators (VPMs)

Validation

Concept

Vary the phase delay Between orthogonal Linear polarizations-Leads to a modulation Of a single linear Stokes parameters with Residuals & systematics Confined to the circular Polarization channel

CLASS Prototype grid

Prototype

PIPER


```
Photon noise ~ (A\Omega)^{1/2}
Big detector: Negligible phonon noise
```

Signal ~ (A Ω) Big detector: S/N improves as (A Ω)^{1/2}

PIXIE detector:

 $A\Omega = 4 \text{ cm}^2 \text{ sr}$ Fill factor = 11% NEP = 0.7 x 10⁻¹⁶ W Hz^{-1/2}

30x collecting area as Planck bolometers

IPSAG

Detector Element Challenges

- TES
 - Conductance Saturation Power
 - Process control on large spatial scales
 - A priori prediction of conductance to minimize iteration
 - Sensor Noise
 - Develop designs with predictable and understandable noise to facilitate optimization.
 - Should reduce time required to optimize a system

- Many fielded polarimeters, some with second and third iteration focal planes
 - Significant design, production, test, and operation experience
- Improving understanding TES thermometers, allowing improved designs
- Improved RF circuit designs and production
- Better test capabilities for focal planes
- Better understanding of best ways to organize focal planes

- TES bolometers operating at low temperatures can reach the sensitivity required for background limited operation for low frequency bolometers (40 GHz, e.g.)
- Given demonstrated high efficiency coupling, there is no reason to doubt they will function at fundamental limits at these low frequencies
 - CLASS has robust demonstrations of efficiency

- Existence of quantum limited amplifiers allows vastly simplified detector arrays of many kinds – TES, MKIDs, and semiconducting bolometers
- Production on larger wafers may change approaches for focal planes
- Spectropolarimeters made possible by improved microstrip circuits and greater ease of multiplexing

- The role of MKIDs in this high power, long wavelength application is not yet clear, but should be within the next 5-10 years.
- Potential benefits are:
 - Possibly simpler production process
 - Complexity may be dominated by other circuit elements
 - High speed of response
 - Less dead time from particle events
 - Operation in ionizing radiation field must be demonstrated

- An active ground and balloon program is driving the development of the first generation of CMB polarization focal planes
- This work, combined with a robust detector development program can produce vastly simplified high performance arrays with can be flown in a CMB space mission at low risk.