

Detector arrays & focal-plane coupling –

Harvey Moseley

Multiplexing -

Kent Irwin

- What are the key immediate areas for development?
- Where is the technology heading in the near term (<2015) and mid-term (>2015)?

The Inflation Probe Technology Roadmap

Technology	Priority	Timescale	Candidates	TRL
Detector Arrays	High	Sub-orbital experiments	TES+SQUID+Antenna HEMT / MMIC	4-5
Optics	Medium	Sub-orbital experiments	Polarization modulators AR coatings	2-5
Coolers	Low	Develop for space	Passive+mechanical+sub-K	3-9
Advanced Arrays		Develop for simplified space implementation. Connects to X-ray, far-IR and optical astronomy	MKID+RF resonator TES+RF resonator	3

Detector arrays & focalplane coupling Harvey Moseley

Multiplexing

Kent Irwin

echno!

Multiplexed readout: two maturing techniques

Time division (**TDM**): different pixels at different times

TDM SQUID switches

Frequency division (**FDM**): different pixels at different frequencies

Room-temperature electronics for FDM

A few of the TES arrays in the field

148 GHz

BICEP-2: 512

SPTpol: 1,536

SCUBA-2: 10,000

450 um

850 um

POLARBEAR: 1,274

ACT-SZ: 3,000

Synergy with x-ray and submillimeter

TES thermometer and readout are similar to x-ray sensors needed for present sounding rocket experiments (Micro-X) and future satellite missions

James Clerk Maxwell Telescope

The DR21 star forming region. The left hand panel shows the SCUBA-2 850 mm image while the right-hand panel is a close up region where the 850 mm data has been overlayed on a UKDISS infrared image (Image credit:JAC)

TES thermometer and readout also leverage the development of submillimeter cameras, such as SCUBA-2 at the JCMT

NGC7331 at 5 wavelengths. The central ring-link structure is clearly visible in the submillimeter dust emission. (Image credit: JAC, Herschel KINGFISH consortium)

TDM broadly used on ground: ACT, SCUBA-2, BICEP-2, Keck Array, SPIDER, ACTpol, CLASS, PIPER, GISMO, ABS...

TDM Maturation

- Demonstration in a balloon-borne environment (SPIDER)
- Reduction in wires
 - EPIC-IM 4K TDM: 5,280 wires, current generation
 - Next-generation flux-addressed TDM: <1,000 wires for EPIC-IM
- Reduction in cryo power load:
 - EPIC-IM 4K TDM: 1.9 μ W at cold stage
 - Next-generation flux-addressed TDM: < 100 nW (20× lower)
- Reduction in room-temp electronics power:
 - EPIC-IM TDM requires 10× lower room temp. electronics power
 - Next-generation TDM will provide ~3× power reduction; the rest comes from lower power components in SPIDER electronics.
 - Need to develop flight-qualified electronics

Flux-address TDM (next generation)

Flux-address TDM

Next-generation flux-address MUX

- Excellent uniformity; 100× mux factor
- 5× reduction in wires for EPIC-IM
- 20× reduction in cold power dissipation
- ~3× reduction in room-temperature electronics power from high mux factor
- On-sky demonstration needed

FDM broadly used on ground: APEX-SZ, SPT, SPTpol, EBEX, POLARBEAR...

- FDM Maturation
 - Full demonstration in a balloon-borne experiment (EBEX)
 - Reduction in wires
 - Full EPIC-IM 4K FDM requires 32× MUX factor (EBEX is 16 ×)
 - Next generation FDM $32 \times$ in development; $64 \times$ goal.
 - Baseband feedback / Digital active nulling
 - Required for the long wires to room temperature in EPIC-IM
 - Reduction in room-temp electronics power:
 - EPIC-IM TDM requires 10× reduction in electronics power (from the 250 mW/detector in EBEX).
 - Digital FDM provides power reduction

Digital active nulling (next generation FDM)

- SQUID feedback loop is digital, but localized to the vicinity of the carriers
- Eliminates wire length restrictions between cryogenic stages
- Deploy for SPT 3rd Generation, POLARBEAR2
- Canadian Space Agency funded development at McGill

The Inflation Probe Technology Roadmap

	Technology	Priority	Timescale	Candidates	TRL
(Detector Arrays	High	Sub-orbital experiments	TES+SQUID+Antenna HEMT / MMIC	4-5
	Optics	Medium	Sub-orbital experiments	Polarization modulators AR coatings	2-5
	Coolers	Low	Develop for space	Passive+mechanical+sub-K	3-9
	Advanced Arrays		Develop for simplified space implementation. Connects to X-ray, far-IR and optical astronomy	MKID+RF resonator TES+RF resonator	3

Advanced array technology: rf-resonators

- Detectors read out with high-Q microwave resonators can have higher multiplex factors, enabling larger arrays (~100 kpixels).
- Advanced, flight-qualified, lowpower room-temperature microwave electronics must be developed

- In the microwave kinetic inductance detector (MKID), the rf resonator itself is the sensor. Improved pixel sensitivity needs to be demonstrated in the CMB.
- 2. TESs can also be read out with rf resonators using quantum-limited amplifiers, with noise as good as TDM and FDM. Now being deployed in 400-channel MUSTANG-2.

Rf-resonator TES: MUSTANG 2

Mrpgkewski 2012

- High-resolution Sunyaev-Zel'dovich imaging of galaxy clusters at 90 GHz
- For 100 m Green Bank Telescope
- 9" resolution, 4.5' fov
 - ~400 feedhorn-coupled TES polarimeters
- 20x improvement in sensitivity over MUSTANG
- First microresonator-coupled TES array on sky

Detector arrays & focal-plane coupling –

Harvey Moseley

Multiplexing -

Kent Irwin

- What are the key immediate areas for development?
- Where is the technology heading in the near term (<2015) and mid-term (>2015)?