The EPIC-IM Mission Concept

Jamie Bock (JPL/Caltech)

IPSAG PCOS Meeting Washington DC, 15 August 2012

Science Objectives for a Space Mission

Maximum Cosmology

- high sensitivity to measure CMB polarization to cosmological (or astrophysical) limits
- 5 arcminute resolution to map CMB lensing polarization
- 1 arcminute resolution for Galactic science

Sensitive

- large background-limited focal plane arrays

Simple

- no cold moving parts
- simplified Planck cooling chain to 100 mK
- single technology covering all spectral bands

Systematic Error Control

- simple pair differencing like Planck
- optics have excellent beam matching and good off-axis performance
- scan strategy: perfectly isotropized scan angles, daily 1/2 sky maps

Theoretical projected potential

Optimal Quadratic (Hu 2001)

Likelihood (Hirata & Seljak 2003)

Gravitational potential determined from CMB polarization and temperature maps Potential sensitive to

- neutrino masses
- late dark energy

All-sky potential map: 600 of these maps on the whole sky!

- a legacy for every future study of structure formation

Mapping Galactic Magnetic Fields over the Whole Sky

Map of full sky with $\sigma_{\rm P}$ < 0.3 %

Mission	Band GHz	FWHM arcmin	σ(Q) kJy/sr/beam	Pol. depth A _v
Planck	350	5	24	4
	500	2	0.9	0.06
EPIC	850	1	0.7	0.01

How does large-scale Galactic field related to field in embedded star-forming regions?

The EPIC-IM Concept in a Nutshell

Experimental Probe of Inflationary Cosmology – Intermediate Mission

⁻ Simple operations, conventional spacecraft

EPIC-IM Bands and Sensitivities

	Frog	0	4 K Telescope Option						30 K	Telesco	oe Option	
	CHal	OFWHM	OFWHM Nbol	NET [µK√s]		$W_{p}^{-1/2}$	δT _{pix} e	N _{bol} ^a	NET [µK√s]		$w_{p}^{-1/2}$	δT _{pix} e
[GHZ]			[#]	bolo ^b	band ^c	[μ Κ -′] ^d	[nK]	[#]	bolo ^b	band ^c	[µK-′] ^d	[nK]
1	30	28	84	84	9.2	14	83	24	83	17	26	150
	45	19	364	71	3.7	5.7	34	84	70	8	12	69
	70	12	1332	60	1.6	2.5	15	208	60	4.1	6.4	37
	100	8.4	2196	54	1.1	1.8	10	444	55	2.6	4.0	24
	150	5.6	3048	52	0.9	1.4	8	516	57	2.5	3.8	23
	220	3.8	1296	59	1.6	2.5	15	408	77	3.8	5.8	34
	340	2.5	744	100	3.7	5.6	33	120	220	20	30	180
	500	1.7	1092	350	10	16 (140) ^r	8 ^g	108	1500	170	260 (2000) ^f	140 ^g
	850	1.0	938	15000	280	740 (70) ^f	7 ^g	110	250k	24k	40k (3000) ^f	340 ^g
]	[otal ^h		11094		0.6	0.9	5.4	2022		1.5	2.3	13

Table 3.2 EPIC-IM Bands and Sensitivities

^aTwo bolometers per focal plane pixel ^bSensitivity for a single bolometer to CMB temperature ^cSensitivity combining all bolometers in a band ^d $[8\pi NET_{bolo}^2/(T_{mis} N_{bol})]^{1/2}(10800/\pi)$

°Sensitivity δT_{CMB} in a 2° x 2° pixel

^fPoint source sensitivity in μ Jy (1 σ) per beam without confusion ^gSurface brightness sensitivity in Jy/sr in a 2° x 2° pixel (1 σ) ^hCombining all bands together

Table 3.3	Sensitivity	v Model	Input	Assum	ptions

Focal plane temperature	To	100 mK	Optical efficiency	η_{opt}	40 %
Blocker temperature	T _{blkr}	4 K	Fractional bandwidth	$\Delta v / v$	30 %
Optics temperature	T _{opt}	4 K / 30 K*	Noise margin†		1.414
Mirror emissivity at 1 mm	3	1 %	Mission lifetime	T_{life}	4 years
Coupling to 4 K / 30 K stop		10 % / 0.5 %*	Heat capacity	C ₀	0.15 pJ/K
Coupling to 4 K baffle		5 %	$\alpha = dln(R)/dln(T)$		100
Bolometer pitch	d/fλ	2/3.25*	TES safety factor‡	P_{sat}/Q	5

*Parameter for 4 K option / 30 K option †The total calculated sensitivity is multiplied by a safety factor of †The factors of safety are 20 for 500 GHz and 200 for 850 GHz (4 K) and 20 for 500 & 850 GHz (30 K)

EPIC-IM vs. Planck Flight Sensitivities

Measuring Low Multipoles in Space-Borne Observation

Measuring Low Multipoles in Space-Borne Observation

Optical Design Requirements

<u>Design</u>

1.4 m "Crossed-Dragone" telescope
Supports 1.5 x 1.0 m focal plane
Oversized primary and secondary mirrors
Cryogenic absorbing aperture stop
Cold baffles possible but not included

Requirements

Secondary

Fill large field of view required for sensitivity Fit into available space in shroud Meet main beam polarization requirement Meet far sidelobe requirement

Aperture

1.Am

Focal Plane

Beam Size

Δ

⊽ Gain

Pointing

Δ

Systematics: Main Beam Effects

					<u> </u>								
and the second		Systematic Error	Description	Potential Effect	Mitigation								
			Main Beam Effects – In	nstrumental Polarization	1								
		Δ Beam Size ($\Delta\mu$)	$FWHM_V \neq FWHM_H$	$\nabla^2 T \to B$	Telescope design ^b								
		Δ Gain (Δ g)	Mismatched gains	$T \rightarrow B$	In-flight beam measurements ^a								
	/	∆ Beam Offset (∆ρ/σ)	Pointing $V \neq$ Pointing H	$\nabla T \rightarrow B$	Orbit-modulated dipole ^a								
		Δ Ellipticity (Δe)	$E_V \neq e_H$	$\nabla^2 T \rightarrow B$	Scan crossings ^a								
	///	Satellite Pointing	Q and U beams offset	$\nabla E \rightarrow B$	Dual analyzers ^b Pointing specification ^a								
			Main Beam Effects	– Cross Polarization									
		∆ Rotation	V & H not orthogonal		T. 0:14								
			V⊥H but rotated w.r.t.	$E \rightarrow B$	In-flight measurements								
		Pixel Rotation (ε)	beam's major axis		on polarized sources								
		Scan Synchronous Signals											
/		Far Sidelobes	Diffraction, scattering	Pickup from sun, earth, moon and Galactic	Optical baffling ^e In-flight measurements								
				plane	on moon, 6-month jackknivesª								
											Thermal Variations	Solar power variations	Temperature variation in optics, detectors
		Magnetic Pickup	Susceptibility in readouts and detectors	Residual signal from ambient B field	Focal plane shielding ^e								
			Therma	l Stability									
		Optics Temperature	Varying optical power from thermal emission	Residual signals from	Dual analyzers ^b								
		Focal Plane	Thermal signal induced	temperature variations	Temperature control ^a								
		Temperature	in detectors										
			0	ther									
		1/f Noise	Detector and readout drift	Striping in map	Stable detectors and readouts ^b								
		Passband Mismatch	Variation in filters	Differential response to foregrounds	Measure to the required level ^b								
		Δ Speed of Response	Different time response between bolometers	$\nabla T \rightarrow B$	Measure to the required level ^b , Scan crossings ^a								

v [GHz]	θ _{FWHM} [arcmin]	δT (ℓ [nKo	=100) _{СМВ}] ^ь	Δ [10	g) ⁻⁴]	Δ [10	μ) ⁻³]	Δρ [10)/σ) ⁻³]°	 [10	∆e) ⁻³] ^d	ء ']	; ']
30	28		4.2		5.2		4		2.3		0.6		7.8
45	19		2.0		2.5		5		1.6		0.7		3.8
70	12	1.6	1.1	1.9	1.4	9	7	2.3	1.3	1.3	0.9	2.9	2.1
100	8.4	1.6	0.8	1.9	1.0	18	9	3.2	1.4	2.6	1.3	2.9	1.4
150	5.6	1.6	0.7	1.9	0.8	40	18	4.9	2.1	5.8	2.5	2.9	1.3
220	3.8	1.6	0.9	1.9	1.1	90	50	7.3	4.2	13	7.2	2.9	1.6
340	2.5		2.3		2.9		300		14		43		4.3

Table 5.4 Summary of Main Beam Requirements and Goals

Requirements on: Differential gain $\Delta g \equiv (g_1 - g_2)/g$ Differential beam size $\Delta \mu \equiv (\sigma_1 - \sigma_2)/\sigma$ where $\sigma = (\sigma_1 + \sigma_2)/2$ Differential beam offset $\Delta \rho/\sigma \equiv (\theta_1 - \theta_2)/\sigma$ Differential ellipticity $\Delta e = (e_1 - e_2)/2$ where $e = (\sigma_x - \sigma_y)/(\sigma_x + \sigma_y)$

Pixel rotation ε in arcmin

^aRequirement (blue) and goal (red) levels are referred to band-averaged beams.

^bRequired and goal level $[\ell(\ell+1) C_{\ell}/2\pi]^{1/2}$ at $\ell = 100$ for EPIC-IM 4 K for a 4-year mission.

^cDifferential beam offset assumes the raw scan pattern. Scan symmetrization relaxes this requirement by approximately a factor of 100.

^dDifferential ellipticity calculated for the worst-case $\psi = 45^{\circ}$. EPIC-IM is ~100x less prone to the more typical optical effect at $\psi = 0^{\circ}$ which to first order converts T \rightarrow E.

Table 5.6 In-Flight Measurements of Band-Averaged Beams on Jupiter

v [GHz]	θ _{FWHM} [arcmin]	Δ [10 ⁻³]	Δμ [10 ⁻³]		Δρ/σ [10 ⁻³]		Δe [10 ⁻³]	
30	28	0.9		4		2.3		0.6
45	19	0.5		5		1.6		0.7
70	12	0.3	9	7	2.3	1.3	1.3	0.9
100	8.4	0.2	18	9	3.2	1.4	2.6	1.3
150	5.6	0.2	40	18	4.9	2.1	5.8	2.5
220	3.8	0.2	90	50	7.3	4.2	13	7.2
340	2.5	0.5		300		14		43

Note:

Following Table 5.4, requirements are shown in blue text; goals are shown in red text on differential beam size (Δμ), beam offset (Δρ/σ), and ellipticity (Δe).
 Jupiter assumed to be 170 K and 50" in apparent diameter.
 Cells are shaded red where measurement Δ does not achieve the required accuracy.

Systematics: Scan-Synchronous Thermal Variations

 1^{st} Shield $\Delta T = 1.2$ K pp

- Reduced Sunshield
 - Flat design was for thermal stability, but thermal ripple is tiny
 - Shields can be canted forward
- Smaller Focal Plane
 - simple trade of cost vs. science
 - multi-color pixels can also reduce focal plane area
- 30 K Optics
 - relaxed requirements on 4 K cooler
 - can remove one level of radiation shielding
 - mostly affects sensitivity in high-frequency channels
- 300 mK
 - only modest loss in sensitivity vs. 100 mK
- Earth Polar Orbit?
 - We're forced into this for a Taurus-class launch

Descope Option: 30 K Telescope

Larger passive cooler Larger focal plane 4 sunshields, 3 V-grooves 11094 detectors **Optics shield actively cooled to 18 K Higher pixel density Optics actively cooled to 4 K More spillover** 2 radiation shields Larger 4 K cooler 21 mW @ 4.4 K (CBE) 67 mW @ 18 K (CBE) 2x design margin '4 K Telescope' Option **Smaller passive cooler** Smaller focal plane 2022 detectors 3 sunshields, 2 V-grooves Optics shield passively cooled to 35 K Lower pixel density **Optics passively cooled to 25 K** Less spillover **3** radiation shields Smaller 4 K cooler 11 mW @ 4 K (CBE) 8 mW @ 18 K (CBE) 2x design margin

'30 K Telescope' Option

Sub-Orbital Predecessors to EPIC-IM Focal Plane

Detector Technology Options

Optical Coupling

Detector / Readout

Feed Coupled

Planar Antennas

Lens-Coupled Antennas

Time-Domain SQUID

Freq-Domain SQUID

RF-Muxed MKID

- EPIC-IM
 - Measures Inflationary polarization to fundamental limits
 - Measures lensing polarization to fundamental limits
 - Returns all-sky Galactic maps to map B-fields
 - Represents a major sensitivity improvement over *Planck*

Technology Development

- Need multi-color background-limited detector arrays
- Compatible with the multiple approaches being developed by the CMB community
- Some development programs reduce mission cost if successful

Avenues for Further Study

- Systematic error analysis encouraging but needs more work
- Need to explore options for simplification and reduced cost
- Is an Explorer configuration possible?

Backup

Thermal Design

Option #1: Cool Telescope and Baffles to 4 K

Telescope actively cooled to 4 K

Optics shield tied to cooler 18 K stage

Temperature of Telescope versus cooling power

Cooling power (mW)	0	10	15	18.5	20	20.25	20.5	21
Optical Bench (telescope) T (K)	17.35	13.86	11.02	7.62	4.83	4.02	3.23	1.43
Optics Box Bottom cooling power (mW) to keep it at 18 K	78.2	74.0	71.4	69.1	68.0	67.8	67.5	67.0

Option #2: Cool Focal Plane Enclosure to 4 K

Focal plane actively cooled

Optical shield cools radiatively

<u>Temperature [K], Time = O sec</u>

Temperature Inner Focal Plane Box versus cooling power

Inner FP Box Cooling power (mW)	0	4	8	10	10.5	10.55	10.58	10.6
Inner FP Box T (K)	24.96	21.53	17.49	11.41	5.28	4.81	4.24	3.12
Outer FP Box P (mW) and	7.09	4.13	0.88	0	0	0	0	0
Т(К)	18	18	18	13.96	8.30	7.89	7.28	6.16

Trade summary:

Remove 1 shield saves 90 kg Reduce cooler power saves 72 W Lower sensitivity due to photon noise and larger pixels

Descoped Focal Plane for 30 K Telescope

'4 K Telescope' Option

'30 K Telescope' Option

- Focal plane reduced by 2.3x in mass
- Detectors become larger for 30 K telescope due to edge spillover
- Total detectors reduced from 11094 to 2022

The EPIC-IM Design

Note: Configurations not shown on same scale Planck based on flight sensitivity and mission duration

← 4 m →

EPIC-	Low Cost	Intermediate Mission 4 K Option	Comprehensive Science
Science	Inflationary B-mode polarization only	Inflationary B-modes, E-modes to cosmic variance, gravitational lensing to cosmic limits, neutrino mass, dark energy, Galactic astronomy	Inflationary B-modes, E-modes to cosmic variance, gravitational lensing, neutrino mass, dark energy, Galactic astronomy
Speed	140 Plancks	1000 Plancks	70 Plancks
Detectors	2400	11,000 (TES bolometer or MKID)	1500
Aperture	Six 30 cm refractors	1.4 m Crossed Dragone telescope	3 m Gregorian Dragone
Bands	30 – 300 GHz	30 – 300 GHz + 500 & 850 GHz	30 – 300 GHz
Cooling	LHe cryostat + ADR	4 K Cryo-cooler + ADR	TBD
Mass	1320 kg CBE	1670 kg CBE	3500 kg CBE
Publication	ArXiv 0805.4207 (192 pages)	ArXiv 0906.1188 (157 pages)	ArXiv 0805.4207 (192 pages)
Cost	\$660M (FY07)	\$920M (FY09)	No cost assessed

Detectors Fill Out Available FOV

Focal Plane Structure

Heat Load Summary (µW)								
Freq (GH	<u>Iz)</u> IR	Readout						
850	0.8	0.18						
500	0.6	0.15						
350	0.4	0.12						
220	0.3	0.22						
150	0.5	0.48						
100	0.2	0.36						
70	0.1	0.27						
45	0.0	0.07						
30	0.0	0.03						
Total	2.8	1.9 μW						

18 K surround at ϵ = 100 % Focal plane 10 % absorbing

<image>

4 K Shield1 K Shield

4 K Filter Stage 1 K Filter Stage 100 mK Detector Stage 100 mK Cooler (ADR)

Titanium Supports

Systematic Error Mitigation

Systematic	ystematic Description Goal		Mitigation	
	Polarized main b	peam effects		
Δ Beam Size	FWHM _E ≠FWHM _H	< 4 x 10 ⁻⁵	Optical design	
Δ Gain	G _E ≠G _H	< 10 ⁻⁴	Smaller beams	
Δ Beam Offset	Point _E ≠Point _H	< 0.14"	Measure beams in flight	Demonstrated in space
Δ Ellipticity	e _E ≠e _H	< 6 x 10 ⁻⁶		or used in Planck
Δ Rotation	E, H not orthogonal	< 4 '	Scan crossings	
Pixel rotation	E, H rotated	< 2.4'	Orbit-modulated dipole	Space required
Optical Cross-Pol	Birefringence	< 10 ⁻⁴		
Satellite Pointing	Q, U offset	< 12"	Gyro + tracker	Demonstrated in sub-
	Scan Synchron	ous Signals		orbital experiments
Far Sidelobes	Diffraction, scattering		Optics design, cold baffles	
Thermal Variations	Changing sun angle	< 1nK _{CMB}	Thermal design	Planned sub-orbital
Magnetic Pickup	Detector susceptibility		Shielding	demonstration
	Thermal St	tability		
40 K Baffle	Vaning optical power	5 mK/√Hz		
2 K Optics	varying oplical power	500 uK/√Hz	Temperature control	
0.1 K Focal Plane	Varying thermal signal	200 nK/√Hz		
Other				
1/f noise	Detector, readout drift	16 mHz	Stabilize focal plane	
Passband mismatch	Variation in filters	$\Delta v / v < 10^{-4}$	Measure	