Detector Technology Lessons from Planck / HFI

Brendan Crill JPL / Caltech 15 August 2012

many members of the Planck/HFI core team, especially:

W. Holmes, A. Catalano, G. Patanchon, P. Ade, Y. Atick, A.Benoît, E. Bréelle, P. Camus, M. Charra, N. Coron, F-X Desert, Y. Giraud-Heraud, J-M. Lamarre, J. Macias-Perez, D. Giard, M. Martinez, F. Pajot, J-L Puget, C. Renault, C. Rosset, D. Santos, L. Spencer, R. Sudiwala, A Sauvé, L Montier, J-M Delouis, L. Vibert,





- High Frequency Instrument (HFI) on Planck used SiN micromesh bolometers (spiderweb and polarization sensitive) with NTD Germanium thermistors
- 100mK maintained from July 3, 2009 to January 14, 2012 (5 full sky surveys)
- Detector NEP ~ 1-2x10<sup>-17</sup> (above 0.6 Hz); NET as low as 40  $\mu$ K<sub>CMB</sub> rt s in a single device
- Cosmic ray hit rate higher than expected (1-2 per second per bolometer)
  - Flagged transients (removes 10-20% of data)
  - Long tails of glitches create excess noise from 0.01 0.2 Hz
  - Occasional (~1/day) shower events create simultaneous response in many detectors
  - Thermal drift of 100mK plate with variable particle flux
  - Effects of undetected glitches?
- Main lesson: direct hits on the bolometer absorber or thermistor are not the only response to cosmic rays!





# **HFI Quick Overview**

| Center Frequency (GHz)                 | 100  | 143  | 217  | 353  | 545      | 857      |
|----------------------------------------|------|------|------|------|----------|----------|
| N Detectors                            | 8    | 11   | 12   | 12   | 3        | 4        |
| Resolution (arcmin)                    | 9.5  | 7.1  | 4.7  | 4.5  | 4.7      | 4.4      |
| Noise in maps $\mu K_{\text{CMB}}$ deg | 1.6  | 0.9  | 1.4  | 5.0  | 70       | 1180     |
| Array NET (μK s)                       | 22.6 | 14.5 | 20.6 | 77.3 | 4.9 (RJ) | 2.1 (RJ) |



Brendan Crill





### HFI







# Polarization-sensitive and spider-web bolometers from JPL







# 3 minutes of raw in-flight data

HFI Core Team: HFI Data Processing







## **Glitches in the data**

- Bolometer glitch rate correlates with on-board particle detectors (SREM) & with SREM data on Herschel and Rosetta
- Planck launched during extreme solar minimum: more low energy galactic particles than expected BUT not enough to explain observed rate



- Solar flares aren't a problem: spacecraft blocks <100MeV solar particles</p>
- Galactics come from all directions; metal surrounding detectors blocks <20 MeV</li>









## **Expected rates: ground vs. flight**







# **Direct effects of Cosmic rays: transients**

- Easy to detect due to scan redundancy
- Three general families: Short, Long, Slow
- Long and Slow glitches have tails with ~2 second time constants
- Rate is dominated by long glitches
- Slow glitches only seen in "a" arm of PSB





## Short glitch energy spectrum

- Caveat: "energy" not well-calibrated yet for particles
- Bump at high energy: ~same in all detectors
- 1 GeV proton should deposit 1-3Kev in grid and 40 KeV in NTD





# Long and Slow glitch energy spectrum

- Slow glitches only in "a" PSBs: maybe impacts in feed-through?
- Long glitches: likely to be hits in the Si die (other theory is secondaries)
- Energy spectrum and rate consistent with simple model of Si absorber







- PSBs are mounted 100 microns apart, see coincidence:
  - Nearly 100% of long glitches: energy deposit is nearly the same
  - In 50% of low energy short glitches
- Secondary showers are seen in the data, but not a significant fraction of total events (more later..)
- Coincidence and rate are well-explained by silicon die model for long glitches



- Ground test campaign underway to study these events further:
  - Understand the glitches in the data better:
    - Model un-detected low energy tail of glitches
    - Long / short misidentification at low S/N
    - Undetected shower events
    - Understand a/b asymmetry
  - Implication for future missions
- Thermal tests: heaters and thermometers mounted on flight spares
  - Is long glitch tail consistent with Si die?
- particle tests:
  - TANDEM linear accelerator: 23MeV protons: give similar results to in-flight (long glitches dominating rate)
  - Delta-electron tests with alpha sources: no secondary e- seen.





# **Glitch Handling in data**







## **Timelines after cleaning**









#### Noise spectrum after cleaning







## Thermal effects of cosmic rays

- ~10 nW of 115 nW heat lift on 100mK stage due to cosmic rays
- Common mode drift removed by decorrelation with dark bolometers
- Lots of uncorrelated drift still remaining
- Note: mapmaking is ~ high pass filter at 1/45 minutes







Only ~ 3 solar flares showed any effects on HFI: glitch rate, noise goes up for ~1-2 hours, dark bolometer heats by almost 1 mK







# **Multiple bolometer coincident hits**







#### **HFI detector Noise Performance**







## **Other notable Planck successes**

- Open cryostat design was successful: all detectors work without additional shielding of closed cryostat
- Telescope emissivity was below 1% (see below)







- Direct hits from solar particles are hardly a concern for detectors surrounded by metal. A few (of order 3) solar flares created ~ hour long periods of increased noise and ~1 microK temperature rise
- Main worry is >30 MeV galactic particles.
- Operation of sub-K instrument during solar maximum is more benign than at solar minimum
- Future space missions with detector NEP<10<sup>-17</sup> operating at T<100mK are technically possible, BUT
  - Take into account the particle environment (now known much better) and effects on the entire system
  - Do beamline tests pre-launch
- A series of papers from Planck/HFI team is in production describing in-flight cosmic ray response and ground tests. Will be part of 2013 Cosmology data release.





- References for more information:
  - Holmes et al (2008) Applied Optics 47 5996.
  - Lamarre et al (2010) A&A 520 A9.
  - Planck Collaboration (2011) "Planck early results II: The thermal performance of Planck" A&A 536 A2
  - Planck HFI Core Team (2011) "Planck early Results IV: First assessment of HFI Inflight performance" A&A 536 A4.
  - Planck HFI Core Team (2011) "Planck early results VI: HFI data processing" A&A 536 A6.





# **Bonus Slides!**





# Stability of 4K and 1.4K stages



Fig. 27. Left – power spectrum of thermal fluctuations measured at the feedhorns that couple to the telescope. Right – power spectrum of thermal fluctuations measured at the 1.4 K filter plate.





## **Stability of 0.1K stage**



Fig. 28. Left – frequency spectrum of the temperature of the bolometer plate, measured in flight (red) and on the ground (blue). Right – spectrum of the flight measurements over a wider frequency range. The shoulder on the low frequency side is due to the temperature fluctuations described in Fig. 30. The bump in the  $10^{-2}$  to  $10^{-3}$  Hz range seen, also seen in *the left panel* but only in the flight curve, is probably associated with the effect of cosmic rays in the bolometer structures.





# **SREM vs plate and dillution PID power**







# **In-flight performance of Planck**

Table 3. Planck performance parameters determined from flight data.

|         |                                     | White-noise <sup>d</sup> |                        |             |                                 |                                   |                          |                             |  |  |  |
|---------|-------------------------------------|--------------------------|------------------------|-------------|---------------------------------|-----------------------------------|--------------------------|-----------------------------|--|--|--|
|         |                                     |                          | mean beam <sup>c</sup> |             | sensitivity                     |                                   | calibration <sup>e</sup> | faintest sourcef            |  |  |  |
|         |                                     | $v_{\text{center}}^{b}$  |                        |             |                                 |                                   | uncertainty              | in ERCSC $ b  > 30^{\circ}$ |  |  |  |
| channel | N <sub>detectors</sub> <sup>a</sup> | [GHz]                    | FWHM                   | ellipticity | $[\mu K_{ m RJ}  { m s}^{1/2}]$ | $[\mu K_{\rm CMB}  { m s}^{1/2}]$ | [%]                      | [mJy]                       |  |  |  |
| 30 GHz  | 4                                   | 28.5                     | 32.65                  | 1.38        | 143.4                           | 146.8                             | 1                        | 480                         |  |  |  |
| 44 GHz  | 6                                   | 44.1                     | 27.92                  | 1.26        | 164.7                           | 173.1                             | 1                        | 585                         |  |  |  |
| 70 GHz  | 12                                  | 70.3                     | 13.01                  | 1.27        | 134.7                           | 152.6                             | 1                        | 481                         |  |  |  |
| 100 GHz | 8                                   | 100                      | 9.37                   | 1.18        | 17.3                            | 22.6                              | 2                        | 344                         |  |  |  |
| 143 GHz | 11                                  | 143                      | 7.04                   | 1.03        | 8.6                             | 14.5                              | 2                        | 206                         |  |  |  |
| 217 GHz | 12                                  | 217                      | 4.68                   | 1.14        | 6.8                             | 20.6                              | 2                        | 183                         |  |  |  |
| 353 GHz | 12                                  | 353                      | 4.43                   | 1.09        | 5.5                             | 77.3                              | 2                        | 198                         |  |  |  |
| 545 GHz | 3                                   | 545                      | 3.80                   | 1.25        | 4.9                             |                                   | 7                        | 381                         |  |  |  |
| 857 GHz | 3                                   | 857                      | 3.67                   | 1.03        | 2.1                             |                                   | 7                        | 655                         |  |  |  |