

High Performance Computing for Dark Energy Missions

Julian Borrill Computational Cosmology Center, Lawrence Berkeley National Laboratory

Perspectives

- HPC user and user representative
 - Most computationally challenging CMB data analyses
 - US (DOE,NSF,NASA) & Europe (CINECA,CSC,BSC)
 - Representing HEP on NUGEX
- HPC systems tester and reviewer
 - NERSC procurement benchmark, early user role
 - NASA HPC procurement reviews
- US Planck Computational Systems Architect
 - Ensuring appropriate resources & systems available for US (and European) Planck members
- Long-term DES Data Management reviewer

Data Processing Elements

- Data reduction
 - Single pipeline generating official data products
 - Some time-critical elements (eg. supernovae)
 - Largely embarrassingly parallel by observation or field
- Data analysis
 - Multiple pipelines extracting a range of science from reduced data
 - Multiple versions of many pipelines
 - Significant fully parallel elements (eg. simulations)
- Data distribution
 - Within collaboration
 - To the world

Computing Needs (I)

- Resources
 - Cycles
 - Memory

- GPU, Many Core (per node, total)
- Heterogeneity & deeper hierarchy
- Fast storage
 Flash
- Archival storage Cloud
- Network
 OpenFlow
- Both needs and resources evolve over mission lifetime.
- Resource evolution is driven by other markets & agencies.
- Transformative changes are coming.
- Resources are only available as part of a whole system.

Resource Hierarchy

- Data movement is everything, cycles are free.
- Optimize to the hierarchy of subsystem costs (~time):
 - network: localize data
 - IO: re-calculation over write/read
 - inter-process communication: hybridize (MPI+threads)
 - on-node communication:
 - threading overhead, GPU bus challenge
 - memory hierarchy:
 - NUMA effects, power challenge & dark silicon
 - cycles: trade for all the above
- Cost hierarchy exacerbated by scale, sharing
- Cost dependence on system & scale imply auto-tuning

Computing Needs (II)

Capacity

- very many jobs each using a small number of nodes

- Capability
 - a small number of jobs each using very many nodes
- Collaboration
 - account availability, capacity, security
- Continuity
 - system evolution/growth over mission lifetime
- Control
 - scheduling, software environment
- Cost

hardware + infrastructure + administration

Resources

- Local/Dedicated Cluster
 Pro: Capacity*, Control
 Con: Capability, Collaboration, Cost, Continuity
- Grid/Cloud computing Pro: Capacity, Collaboration, Continuity*, Cost* Con: Capability, Control
- @home computing
 Pro: Capacity, Cost, Continuity
 Con: Capability, Control, Collaboration
- Supercomputer
 Pro: Capacity, Capability, Cost, Collaboration, Continuity
 Con: Control*

Resource Providers

- Local clusters universities, federal laboratories
- Dedicated clusters space & larger suborbital missions
- Grid computing NSF (XSEDE), Europe (PRACE)
- Cloud computing Amazon etc
- @home computing www
- Supercomputing (top 20 systems)
 - Europe (CINECA, CEA)
 - NASA Ames (Pleiades)
 - NSF NCSA (Blue Waters)
 - SDSC (Gordon)
 - DOE NERSC (Hopper, NERSC-7), LCFs (Mira, Titan)
 - NNSA (Sequoia, Cielo)

The Planck Example

- Dedicated clusters at two European data processing centers (Paris/HFI, Trieste/LFI).
- Each performs official pipeline reduction & analysis of one instrument's data.
- Problems:
 - very limited resources
 - constrain official analysis
 - preclude other analyses/analysts
 - very restrictive pipeline designs
 - locked to one instrument's data
 - locked to DPC-specific infrastructure
- US goal provide resources to support fully collaborative analyses of both data sets, both individually and together.

NERSC

- DOE's general-purpose supercomputing center.
- Runs 2 high-end systems simultaneously.
- Deploys a new top-10 system every ~2 years

- several smaller clusters
- large global file-system
- modular software stack
- project disk spaces

US Planck At NERSC

- Planck use evolved from previous CMB work at NERSC
 - substantial annual allocation of resources
 - open access for all Planck data analysts
 - excellent support, eg. priority boost during critical times
- Formalized by 2007 NASA/DOE MoU
 - guaranteed minimum allocation throughout mission
 - up to 10M CPU-hours/year
 - 100TB unpurged space on global filesystem
 - locate dedicated US Planck resources at NERSC
 - i. 256 core stand-alone cluster (2008-11)
 - ii. 640 dedicated system cores & queue (2012-15)
 - additional 2 5M CPU-hours/year

Additional US Planck Resources

- IPAC cluster(s)
 - US entry point for Planck data
 - source of Early Release Compact Source Catalogue (formal US deliverable)
 - home of US Planck archive
- planck@home
 - distributing/collating most embarrassingly parallel cosmological parameter calculations

Conclusions

Understand your data challenge:

- Know the scaling and efficiency of your algorithm and its implementation, both in theory and practice.
- Make *informed* algorithm/science trade-offs
 - often implementation is the issue
 - Moore's Law is your friend!
- Remember that the computational challenge is dynamic
 - implementations evolve with the scale and balance of each new generation/class of HPC system.
- Don't shoot yourself in the foot!
 - build in data efficiency from the outset.
- Find the resources for the problem, not the problem for the resources.

Conclusions

- Match the computing need to the resource
 - most time-critical: dedicated clusters
 - most embarrassingly parallel: @home
 - most computationally challenging: supercomputers
 - widest collaboratory: supercomputer centers
- Exploit the additional opportunities
 - dedicated clusters: sponsorship
 - @home: public outreach
 - supercomputing: inter-agency, trans-disciplinary & industrial partnerships