The Nuclear Compton Telescope

A balloon-borne γ-ray spectrometer, polarimeter & imager

The NCT Collaboration: S.E. Boggs, A. Lowell, A. Zoglauer (UCB/SSL) M. Amman (LBNL) H.-K. Chang, C.-L. Chiu (NTHU, Taiwan) Y.-H. Chang (NCU, Taiwan) O.-H. Lin (AS, Taiwan) A. Huang (NUU, Taiwan) P. Jean, P. von Ballmoos (IRAP, France) Supported by grants from NASA

Mini

1st NCT Science Flight 2009

- 37 hour flight with 10 detectors from Ft. Sumner, New Mexico on May 17-18, 2009.
- Sufficient data to produce an image of the Crab Nebula, first image of an astrophysical source with a compact Compton Telescope! (Bandstra et al., ApJ, 2011)

NCT Prototype Flight 2005

- 6 hour prototype flight (2 detectors) from Ft. Sumner, New Mexico on June 1st, 2005.
- Measurement of gamma-ray background at balloon float altitudes (J.D Bowen et. al., IEEE, 2007)

NCT 2.0

• New detector geometry, better FoV, low-energy response, polarimetry

- All new gondola, designed for superpressure, ULDB
- Solar power
- LN2 replaced by cryocooler
- replace BGO with CsI shields

2014/2015 Flight Campaign:

- Rebuilding of instrument has begun
- Designing for superpressure balloon
- Southern hemisphere launch, eventual ULDB Flight

Primary Science Goal:

• Use Compton Imaging to map the 511 keV positron annihilation line from the galactic center

Secondary Science Goals:

• SNe gamma-ray lines

(²⁶Al at 1.809 MeV, ⁶⁰Fe at 1.173/1.333 MeV, ⁴⁴Ti at 1157 MeV)

- Compact Objects (AGN, black holes, neutron stars)
- Gamma-ray polarization

Source	Decay	Energy	Goal
SNe Ia (?)	e ⁺ e ⁻	0.511	360 map
SNe II/Ib	^{26}Al	1.809 MeV	360 map
	⁶⁰ Fe	1.173, 1.333	50 detect
SNe	⁴⁴ Ti	1.157	resolved line
BHs	e ⁺ e ⁻	≤0.511	discovery

Developments for Ge Compton telescopes:

- finer strip pitch
- \checkmark better interaction resolution
- \checkmark intrinsic angular resolution
- low-noise ASIC readout
- \checkmark low power
- \checkmark low mass
- \checkmark more channels/better resolution
- mechanical cooling

All 3 are being developed between NCT & GRIPS!

NCT Future Plans:

- Fermi model all sky survey
- bridge the MeV gap
- background rejection
- high spectral resolution
- polarization