


The Physics of the Cosmos Program Analysis Group

John W. Conklin for the PhysPAG University of Florida, jwconklin@ufl.edu

Goals of the PhysPAG

To understand nature of the Universe

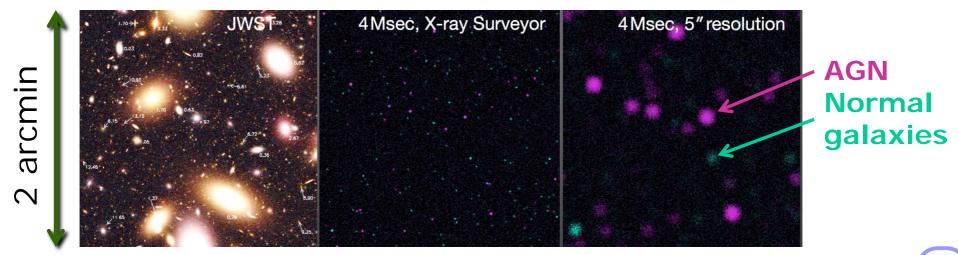
- What are its constituents? What are the laws that govern its birth and evolution?
- Dark Energy: Probe the nature of dark energy by studying the expansion rate of the universe and the growth of structure
- Inflation: Test the theory of inflation by measuring the polarization of the Cosmic Microwave Background
- Black Holes & General Relativity: Probe the properties of black holes and test General Relativity in strong gravity environments using x-ray emission and gravitational waves
- Behavior of Matter in Extreme Environments: Explore extreme astrophysical processes with Cosmic rays, X-rays and Gamma-rays

PhysPAG Executive Committee

Name	Institution	Topical Area	Term end
J. Bock, Chair	Caltech/JPL	CMB	December 2016
M. Bautz, Vice Chair	MIT	X-rays	December 2016
R. Bean	Cornell Univ.	Dark Energy	December 2016
J. Bookbinder	SAO	X-rays	December 2015
J. Conklin*	Univ. of Florida	Gravitational Waves	December 2017
N. Cornish	Montana State	Gravitational Waves	December 2016
O. Doré*	JPL	Dark Energy	December 2017
H. Krawczynski*	Washington U. in St. Louis	Gamma-rays	December 2017
M. McConnell	U. of New Hampshire	Gamma-rays	December 2016
A. Miller*	Columbia Univ.	CMB	December 2017
J. Nousek	PSU	X-rays	December 2015
A. Olinto	Univ. of Chicago	Astroparticles	December 2015
Eun-Suk Seo	U. of Maryland	Astroparticles	December 2016
E. Wollack*	NASA/GSFC	CMB	December 2017

Gathering Input for The Charge

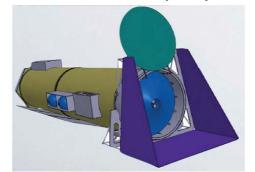
- January AAS, Seattle:
 - X-ray-, Gamma- & Cosmic-SIG, PhysPAG & Joint PAG meetings
- January CMB Pol. Workshop, Minneapolis:
 - IP-SIG discussions
- February 'Future Space-Based Gamma Observatories':
 - Gamma-SIG
- March, Joint PAG EC meeting, Baltimore
- April, APS meeting, Baltimore:
 - Cosmic-, GW- & Gamma-SIG meetings; PCOS & Gamma Mini-symposia
- June/July, HEAD meeting, Chicago:
 - Gamma-, X-ray-SIG & various panels
- Presentations from large missions at PhysPAG EC telecons

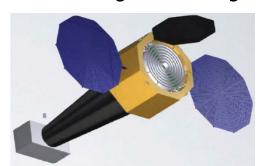

PhysPAG Report on Large Missions

- Joint-PAG Executive Summary
- PhysPAG science return from four large mission candidates
 - X-Ray Surveyor
 - LUVOIR & HabEx
 - Far IR Surveyor
- The Gravitational Wave Surveyor and ESA's L3 mission
- The Inflation Probe
- The Probe class mission

The X-ray Surveyor

- Origin and growth of the first supermassive black holes
 - Detection of central black holes from earliest galaxies (z ≥ 10)
- Physics of feedback and accretion in galaxies and clusters
 - Characterize quantity, composition, and energy content of hot gas in Milky-Way sized halos out to z \sim 1
- Cosmology and the growth of cosmic structure
 - Provide accurate cosmological growth of structure measurements to z~1.5
- Extreme environments
 - Study behavior of matter and spacetime in vicinity of event horizons


X-ray Surveyor & Athena


Athena (L2)

The X-ray Surveyor

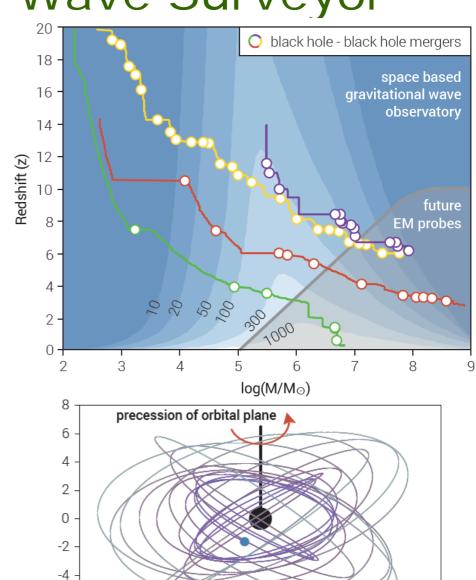
	Chandra	Athena (L2)	X-ray Surveyor
Relative effective area	1	50	50
Angular resolution (arc seconds 50% HPD)	0.5	5	0.5
Point source sensitivity (erg s ⁻² cm ⁻²)	5 x 10 ⁻¹⁸ (4 Ms)	2.5 x 10 ^{-17 *} (Survey)	3 x 10 ⁻¹⁹ (4 Ms)
Imaging Field of View	17' x 17'	40' x 40'	22' x 22'
Spectral Resolving Power @ 1 keV @ 6 keV	1000 160	400 2400	5000 1200

Sensitivities: Athena: Nandra at al. 2014 Athena Mission Report

*confusion limit

X-ray Surveyor: Gaskin at al. 2015 white paper submitted to PhysPAG

- Unraveling Galactic Dynamics with Proper Motions
 - New level of precision in measuring effects of dark on normal matter
- Precision Measurements of the Growth of Structure
 - Uniquely probe the growth of mass and stellar populations over 1 < z < 3.5
- Dark Matter Halo Maps with Strong Lensing
 - Expanding Hubble's "Frontier Fields"
- Ultra-Faint Satellite Dynamics
 - Proper motions and radial velocities of stars in dwarf spheroidal galaxies
- Multi-messenger astronomy
 - Large Synoptic Survey Telescope (LSST) at optical wavelengths
 - Square Kilometer Array (SKA) at radio wavelengths
 - Advanced LIGO and Virgo detectors for gravitational waves


The Far-IR Surveyor

- When did the first supermassive black holes form?
- Evolution of galaxies and their supermassive black holes
- Trace dusty, star-forming galaxies to understand
 - Nature of dark energy
 - Measure certain cosmological parameters
 - Test gravity at cosmological length scales
 - Study the non-Gaussianity of the density distribution
- Complements Euclid and WFIRST by extending clustering measurements to early times (z > 2)
- Multi-messenger studies with GW events
- Technology synergies: Inflation Probe, X-ray detectors & optics

The Gravitational Wave Surveyor

- Broadest & deepest survey
- Evolution of galaxies and their supermassive black holes
- Spin distribution of supermassive BHs throughout universe
- Survey compact stellar-mass binaries
 - Understand structure of Milky Way
 - Population of stellar-mass compact objects in galactic nuclei
- Multi-messenger observations
- Test of GR in strong field regime
- Unknown unknowns

GW Landscape in 2019-2020

LISA Pathfinder (Nov 2015)

PTA detection

Preparing L3 Collaboration for Decadal

- Viable NASA-ESA partnership on L3 requires:
 - Strong recommendation by 2020 decadal committee
 - Technology development in cooperation with Europe (ESA: TRL 5 by 2020)
- Gravitational Wave Surveyor study to inform the 2020 decadal:
 - Technology assessment: U.S. strengths + new developments
 - Range of options for U.S. participation and contributions
 - Update science case based on knowledge gained since 2010

If these assumptions change, this report needs to be reevaluated

The Inflation Probe

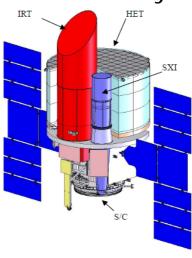
- Science goal:
 - Detection of B-modes produced by primordial gravitational waves
 - ⇒ confirmation of inflation and
 - ⇒ identification of the energy scale at which inflation took place
- The Inflation Probe is a Probe-Class Mission
 - IPSIG feels the mission fits this category
- PAGs assume the 2010 decadal recommendations will be fulfilled

"The committee recommends a technology program to advance detection techniques ... and technology selection and mission development to design a mission to study the signal [if detected]."

If these assumptions change, this report needs to be reevaluated

The Probe Class Mission

- Strong Interest in Probe Missions
- Developing point mission concepts
 - Particularly strong X-ray, gamma-ray, cosmic-ray interest
- Developing a probe category ala Discovery or New Frontiers
- PAGs willing to assist in a future process defined by NASA
- Just a few (randomly selected!) examples of the many concepts


LOFT 200 eV, 8.5 m²

Advanced Pair Telescope

