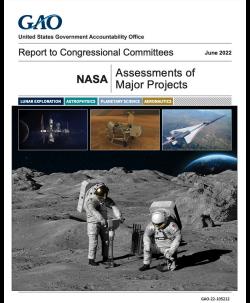
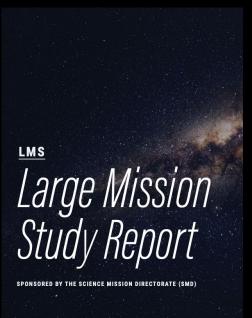
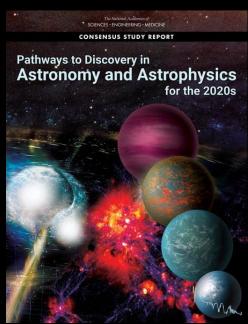
How to get involved in Habitable Worlds Observatory

Eric Burns

Great Observatory Maturation Program (GOMAP)


Independent Research Papers


Mission Concept Reports


GAO Report on Major Projects

NASA SMD Internal Studies

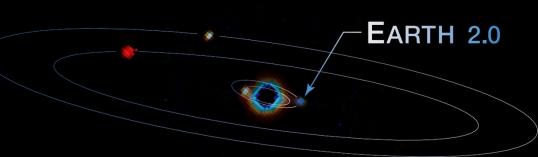
National Academy Reports

<u>Finding</u>: For a decadal survey to confidently recommend implementation of a strategic mission as its highest priority, the mission's technology and architecture need to be **developed to a level of maturity that allows a reasonable assessment of budget profile, scientific performance, and technology risk. The mission's cost range and development time scale must be deemed appropriate for the scientific scope.**

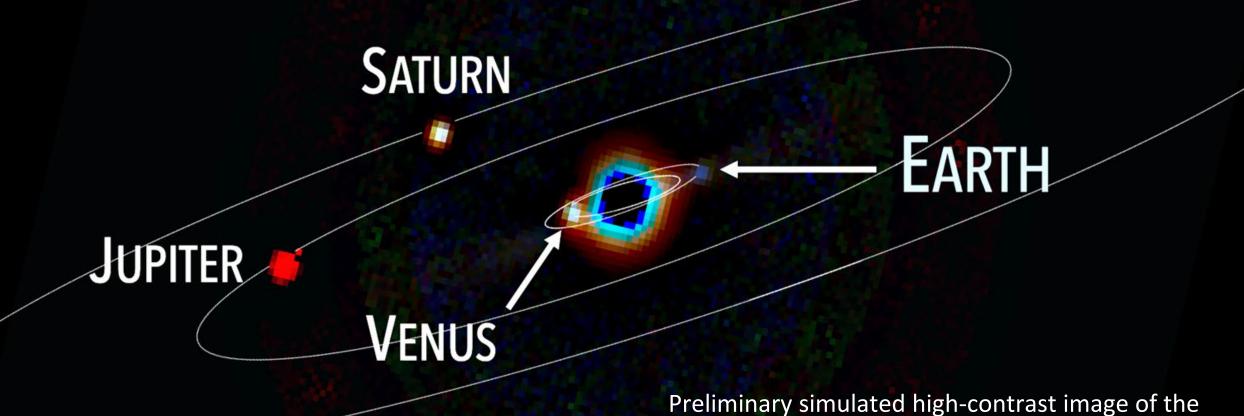
<u>Conclusion</u>: Enabling subsequent decadal surveys to recommend mission implementations with sufficient knowledge of the feasibility, overall budgetary needs, and time scale requires **significant investment toward maturing large strategic mission science**, **technologies**, **and architecture in an integrated way**.

Recommendation:

The NASA Astrophysics Division should **establish a Great Observatories Mission and Technology Maturation Program**, the purpose of which is to codevelop the science, mission architecture, and technologies for NASA large strategic missions identified as high priority by decadal surveys [**First entrant**: IR/O/UV observatory]


NASA's next flagship mission concept recommended by Astro2020 Decadal Survey

Large-aperture IR/Opt/UV observatory performing transformative astrophysics


First telescope designed specifically to search for signs of life on planets outside our solar system

HABITABLE WORLDS OBSERVATORY SCIENCE

ANOTHER EARTH

Credit: Kammerer, Pueyo (STScI), Juanola Parramon, Stark (GSFC)

Solar System with a coronagraph on HWO

"If planets like Earth are rare, our own world becomes even more precious.

If we do discover the signature of life in another planetary system, it will change our place in the universe in a way not seen since the days of Copernicus."

National Academies of Sciences, Engineering, and Medicine Astro2020 Decadal Survey Report (Nov 2021)

TRADE SPACES & HOW TO EXPLORE THEM

MILESTONES

GOMAP Established START & TAG Formed

Initial Working Groups Formed Concept Maturity Level 3

Status Review

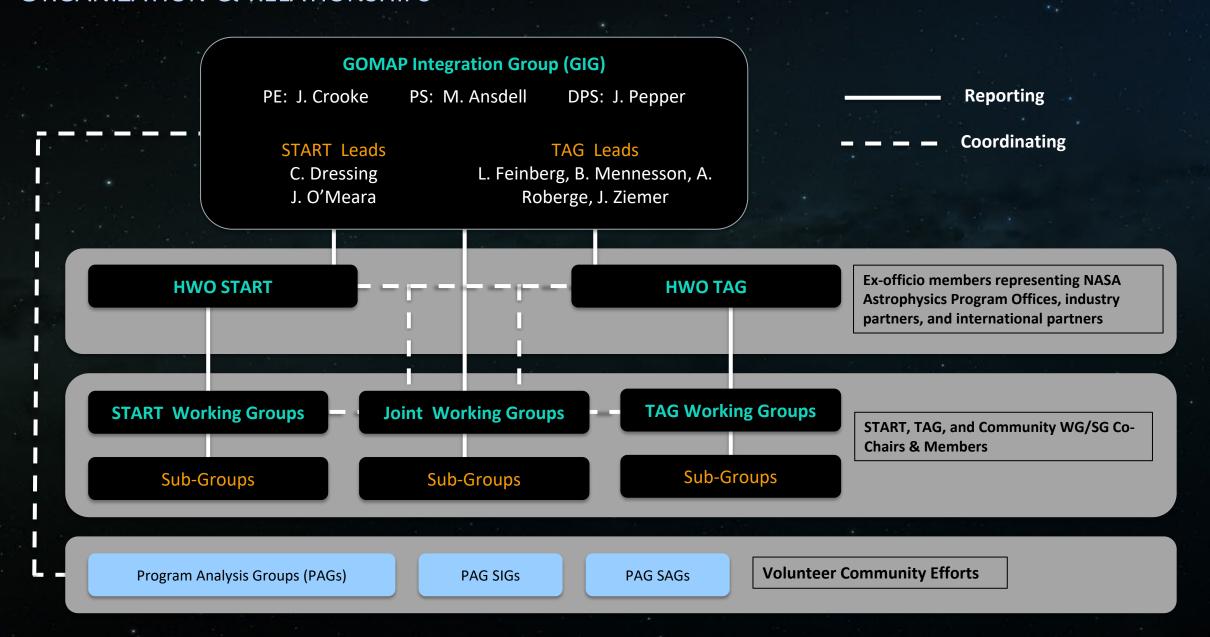
ACTIVITIES

Begin Decadal Survey implementation

Investigate potential science cases & identify mission drivers

Solicit & select initial START & TAG members

Develop analytic science & engineering codes & models


Develop precursor science & technology calls

Assess technology gaps & aerospace landscape

Communicate GOMAP approach with HWO

Develop technology maturation roadmaps

ORGANIZATION & RELATIONSHIPS

HWO WORKING GROUPS

Likely to evolve in future

START

Galaxy Growth Ravindranath & Postman

Evolution of the Elements Lee & Scowen

Ground-Based Astronomy in the 2030s/2040s Lopez-Morales & Miyazaki

the 2030s/2040s Petre & Kataria

Joint & Community

DEIA & Mentorship Scannapieco & TBD

Science Case Simulation Batalha & Osten

GOMAP Synergies for Future Missions Gaskin & Oschmann

Science Data Simulation Greene & Tumlinson

Science-Engineering Interface Morrissey & Sitarski

Past Studies Comparison Gaudi

TAG

Systems Menzel & Shaklan

Integrated Modeling Levine & Liu

> **Technology** Bolcar & Zhao

Servicing Van Campen & Grunsfeld

Space-Based Astronomy in

Communications Schirner & Straughn

Living Worlds

Arney & Parenteau

Solar System in Context

Robinson & Shkolnik

Artificial Intelligence & **Machine Learning** Ansdell & Dean

START FIRST STEPS

HWO Science Goals from Astro2020

High-level Questions

"How did the seeds of Solar System planets first come together?"

Goals to Objectives

Define Investigations

"Discover trans-Neptunian objects down to sizes that distinguish between different planetesimal formation scenarios"

Objectives to Measurements

Determine Physical Parameters to Measure

"Detection of 30 TNOs with diameters ~4km out to 40 AU to constrain the small end of the size distribution at X precision"

Measurements to Observations

Define Needed Observations

"Detection of R< 31.5 mag objects at SNR > 5 in a 0.017 deg² region imaged in R band"

This work feeds the first four columns of a future Science Traceability Matrix (STM)

But what we really want is to ...

START FIRST STEPS

HWO Science Goals from Astro2020

High-level Questions

"How did the seeds of Solar System planets first come together?"

Goals to Objectives

Define Investigations

"Discover trans-Neptunian objects down to sizes that distinguish between different planetesimal formation scenarios"

Objectives to Measurements

Determine Physical Parameters to Measure

"Detection of 30 TNOs with diameters ~4km out to 40 AU to constrain the small end of the size distribution at X precision"

Measurements to Observations

Define Needed Observations

"Detection of R< 31.5 mag objects at SNR > 5 in a 0.017 deg² region imaged in R band"

Quantify science returns as functions of observatory capabilities.

Determine correlations & derivatives.

Start building an integrated science model that will connect to engineering models.

Dynamic Integrated Science Return Analysis (DISRA)

TAG FIRST STEPS: EXPLORATORY ANALYTIC CASES (EACS)

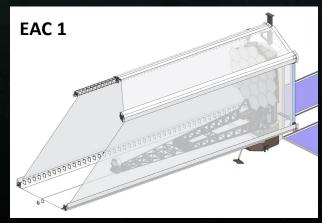
1st round mission architectures that will be used to explore the HWO trade space. Purposes ...

- Practice end-to-end modeling, from science to engineering. Develop initial models & codes to "pipeclean" the process using representative examples
- Use EACs to identify key technology gaps and guide maturation of potential technology solutions
- Provide feedback to rocket vendors as soon as possible to help influence their direction

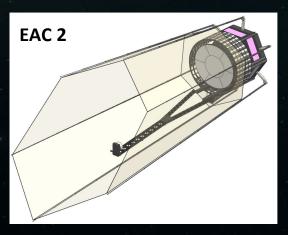
We don't expect any of the cases studied will become a baseline design going forward.

These are only coarse models intended to explore and practice.

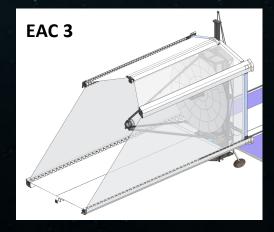
Early JWST



TAG FIRST STEPS: EXPLORATORY ANALYTIC CASES (EACS)


1st round mission architectures that will be used to explore the HWO trade space. Purposes ...

- Practice end-to-end modeling, from science to engineering. Develop initial models & codes to "pipeclean" the process using representative examples
- Use EACs to identify key technology gaps and guide maturation of potential technology solutions
- Provide feedback to rocket vendors as soon as possible to help influence their direction


Exploration of three 1st round EACs will take ~ 1 year. Findings will fold into 2nd round of EACs.

6-m inner diameter / 7.2-m outer diameter off-axis

6-m diameter off-axis

8-m diameter on-axis

SUMMARY

- If you want the next flagship to do your science, get involved
- How to get involved join a subworking group
 - https://habitableworldsobservatory.org/about
- Questions?
 - Ask now!
 - Or find us this week: Jon Arenberg, Eric Burns,
 Edmund Hodges-Kluck, Rob Petre,
 - Or Jessica Gaskin as another representative from the high energy side

