Update on the Roadmap to POEMMA PROBE OF EXTREME MULTI-MESSENGER ASTROPHYSICS

Angela V. Olimto

POEMMA Collaboration

USA: University of Chicago: A. V. Olinto (PI), S. S. Meyer, J. Eser, R. Diesing; NASA/GSFC: J. F. Krizmanic (deputy PI), E. Hays, J. McEnery, J. W. Mitchell, J. S Perkins, F. Stecker, T. M. Venters; NASA/MSFC: P. Bertone, M.J. Christl, R. M. Young; Colorado School of Mines: F. Sarazin, L. Wiencke, G. Filippatos, V. Kungel, K.-D. Merenda; University of Alabama, Huntsville: J. Adams, E. Kuznetsov, P. Reardon, University of Utah: D. R. Bergman; University of Maryland: C. Guepin; City University of New York, Lehman College: L. Anchordogu, T. C. Paul, J. F. Soriano; Georgia Institute of Technology: A. N. Otte, M. Bagheri, E. Gazda, O. Romero Matamala; Space Sciences Laboratory, University of California, Berkeley: E. Judd; University of Iowa: M. H. Reno, Y. Onel, J. Nachtman, D. Winn; KIPAC, Stanford: K. Fang **CZECH Rep: Palacký University:** K. Cerny, **Czech Academy of Sciences**: D. Mandát, M. Pech, P. Schovánek **DENMARK: NBI:** M. Bustamante FRANCE: APC Univerite de Paris 7: E. Parizot, G. Prevot; IAP, Paris: C. Guepin **GERMANY: KIT:** R. Engel, A. Haungs, R. Ulrich, M. Unger; ITALY: Universita di Torino: M. E. Bertaina, D. Barghini, M. Battisti, F. Bisconti, F. Fenu, H. Miyamoto, Z. Plebaniak; Gran Sasso Science Institute: R. Aloisio, A. L. Cummings, I. De Mitri; INFN Frascati: M. Ricci, INFN Tor Vergata: M. Casolino, L. Marceli, U. of Rome Tor Vergata: P. Picozza; INFN, Catania: A. Anzalone, INFN, Bari: F. Cafagna, Univ. Catania: R. Caruso, **INFN, Napoli:** G. Osteria, JAPAN: RIKEN: M. Casolino,, Y. Takizawa MEXICO: UNAM: G. Medina Tanco NORWAY: NTNU: F. Oikonomou POLAND: University of Warsaw: L. W. Piotrowski; NCNR, Lodz: K. Shinozaki RUSSIA: MSU: P. Klimov, M. Zotov **SLOVAKIA: IEP, Slovak Academy of Science:** S. Mackovjak 76 scientists from 38 institutions and 13 countries **SWITZERLAND: University of Geneva:** A. Neronov OWL, JEM-EUSO, Auger, TA, Veritas, CTA, Fermi, Theory

POEMMA & EUISO APS Talks

Saturday, April 9, 2022 E15.00006 : nuSpaceSim, John F Krizmanic, et al

Monday, April 11, 2022 W03.00001: EUSO-SPB2 Status and Science, Angela V. Olinto, et al. W03.00002: Development of the Cherenkov Telescope for EUSO-SPB2, Eliza Gazda et al. W03.00003: EUSO-SPB2 Telescope Optics and Testing, Viktoria Kungel et al.

Tuesday, April 12, 2022

Z03.00004 Observing UHECRs and cosmic neutrinos with POEMMA, Claire Guepin et al,

Astroparticle Physics Questions:

What are the sources of the **Ultra-High Energy Cosmic Rays** (UHECRs)? Measure Spectrum, Composition, Anisotropies E>10¹⁹ eV = 10 EeV

What are the sources of **Astrophysical Neutrinos**?

Multi-Messenger coincidence gamma-ray, gravitational waves, and neutrinos with $E>10^{16} eV = 10 PeV$

What is the physics and astrophysics at energies >> "ground-based" accelerators?

Extensive Air Showers

Auger Spectrum ICRC 2019

PIERRE

AUGER

Augrer (and TA) Anisotropy Hints > 40 EeV Starbursts Galaxies (SBGs) or Active Galactic Nuclei (AGN)?

M82 – SBG

NGC 253 – SBG

1. Batto

M83 – SBG

M87- AGN

Centaurus A – AGN

Cosmogremic & Astrophysical Messengrers

Batista et al, arXiv:1903.06714.pdf

estimated neutrino energy of 300TeV

Probe Of Extreme Multi-Messenger Astrophysics UHECRs and Cosmic Neutrinos

SEMMA

TABLE I: POEMMA Specifications:

Photometer	Components		Spacecraft		
Optics	Schmidt	45° full FoV	Slew rate	90° in 8 min	
	Primary Mirror 4 m diam.		Pointing Res.	0.1°	
	Corrector Lens	3.3 m diam.	Pointing Know.	0.01°	
	Focal Surface	1.6 m diam.	Clock synch.	10 nsec	
	Pixel Size	$3 \times 3 \text{ mm}^2$	Data Storage	7 days	
	Pixel FoV	0.084°	Communication	S-band	
PFC	MAPMT ($1\mu s$)	126,720 pixels	Wet Mass	3,450 kg	
PCC	SiPM (20 ns)	15,360 pixels	Total Power	880 W	
Photometer (One)			Mission	(2 Observatories)	
	Mass	1,550 kg	Lifetime	3 year (5 year goal)	
	Power	590 W	Orbit	525 km, 28.5° Inc	
	Data	< 1 GB/day	Orbit Period	95 min	
			Observatory Sep.	~25 - 1000+ km	

Each Observatory = Photometer + Spacecraft; POEMMA Mission = 2 Observatories

POEMMA

Hybrid Focal Surface

UV Fluorescence MAPMTs with BG3 filter: 1 usec sampling

Cherenkov Detection SiPMs:

20 nsec sampling Elementary Cell (EC) SiPM (8x8)

PCB1

Si-Diode

30 SiPM focal surface units Total 15,360 pixels 512 pixels per FSU (64x4x2)

PCB2

Interconnector

EUSO-SPB2 Cherenkov Camera

TOTAL 126,720 pixels (1 PDM = 36 MAPMTs = 2,304 pixels)

POEMMA Mission

Mission Lifetime:	3 years (5 year goal)
Orbits:	525 km, 28.5° Inc
Orbit Period:	95 min
Satellite Separation:	~25 km – 1000+ km
Satellite Position:	1 m (knowledge)
Pointing Resolution:	0.1°
Pointing Knowledge:	0.01°
Slew Rate:	8 min for 90 °
Satellite Wet Mass:	3860 kg
Power:	2030 W
Data:	1 GB/day
Data Storage:	7 days
Communication:	S-band (X-band if needed)
Clock synch (timing):	10 nsec

Operations:

- Each satellite collects data autonomously
- Coincidences analyzed on the ground
- View the Earth at near-moonless nights, charge in day and telemeter data to ground
- ToO Mode: dedicated com uplink to reorient satellites

Observation Modes	Telescope Separation	Pointing	Science Goals (section)
POEMMA-Stereo (mode-2)	~300 km	down close to Nadir; overlapping atmospheric volumes	UHECR fluorescence (2.2, 2.3) precision stereo reconstruction UHECR lower energies 10s EeVs
	~25 km	towards the Limb; azimuth follows ToO target overlapping volume at Limb	Neutrino Cherenkov (2.4, 2.5, 2.6) ToO-stereo
POEMMA-Limb (mode-3)		towards the Limb; overlapping volume nearby non-overlapping at Limb	UHECR fluorescence (2.2, 2.3) stereo reconstruction 10s EeV monocular for 100s EeVs
	~300 km	fast slew towards the Limb from POEMMA-Stereo mode azimuth follows ToO target	Neutrino Cherenkov (2.4, 2.5, 2.6) ToO-dual

Dual Manifest ATLAS V LPF

Observing Modes

Nadir for UHECR: Radius 200-400 km

Limb for Neutrinos & UHECRs: Radius 3 10³ km

POEMMA UHECR Exposure

POEMMA: Neutrinos

Monday, April 19, 2021 S10.00007 : Targets of Opportunity with POEMMA, Tonia Venters, et al.

POEMMA designed to observe neutrinos with E > 20 PeV through Cherenkov signal of tau decays.

High-Energy Astrophysical Events generates neutrinos (v_e , v_μ) and 3 neutrino flavors reach Earth (Oscillations). Tau neutrinos generate tau leptons on their way out of the Earth's surface which decay producing up-going showers, detected by POEMMA

Artist's rep NS-NS merger. Credit: NSF/LIGO/SSU/A. Simonnet.

Artist's rep WD-WD merger

Credit: Ars Technica

POEMMA: Neutrino Target of

Opportunity

arXiv:1906.07209

Long Bursts							
	No. of ν 's at	No. of ν 's at	Largest Distance for				
Source Class	\mathbf{GC}	$3 \mathrm{Mpc}$	1.0 ν per event	Model Reference			
TDEs	1.1×10^{5}	0.8	3 Mpc	Dai and Fang [17] average			
TDEs	5.6×10^{5}	3.9	6 Mpc	Dai and Fang $[17]$ bright			
				Lunardini and Winter [18]			
				$M_{ m SMBH} = 5 imes 10^6 M_{\odot}$			
TDEs	$2.2 imes10^8$	$1.4 imes10^3$	$115 \mathrm{Mpc}$	Lumi Scaling Model			
	~			Lunardini and Winter [18]			
TDEs	6.3×10^{7}	396	62 Mpc	Base Scenario			
				$ m RFGBW \ [19] - FSRQ$			
	00000	00.272	7011098	proton-dominated advective escape			
Blazar Flares	NA*	NA*	$43 \mathrm{Mpc}$	model			
IGRB Reverse							
Shock (ISM)	9.9×10^4	0.7	$2 \mathrm{Mpc}$	Murase [15]			
lGRB Reverse	-						
Shock (wind)	2.0×10^7	144	$37 \mathrm{Mpc}$	Murase [15]			
BH-BH				Kotera and Silk [20] (rescaled)			
merger	$2.3 imes10^7$	160	39 Mpc	Low Fluence			
BH-BH				Kotera and Silk [20] (rescaled)			
merger	$2.4 imes10^8$	$1.7 imes10^3$	$119 { m Mpc}$	High Fluence			
NS-NS merger	$3.6 imes10^6$	24.8	$13 { m Mpc}$	Fang and Metzger [21]			
WD-WD merger	20.0	0	33 kpc	XMMD [22]			
Newly-born							
Crab-like pulsars							
(p)	1.6×10^{2}	1.1×10^{-3}	$98 \mathrm{~kpc}$	Fang $[23]$			
Newly-born				100 m 1 186 m			
magnetars (p)	2.1×10^{4}	0.1	$1 { m Mpc}$	Fang $[23]$			
Newly-born							
magnetars (Fe)	4.1×10^{4}	0.3	$2 \mathrm{Mpc}$	Fang $[23]$			
			Short Bursts				
	No. of ν 's at	No. of ν 's at	Largest Distance for				
Source Class	\mathbf{GC}	3 Mpc	1.0 ν per event	Model Reference			
sGRB Extended							
Emission							
(moderate)	9.0×10^{7}	6.5×10^{2}	81 Mpc	KMMK [16]			

Not applicable due to a lack of known blazars within 100 Mpc.

Artist's rep TDE (star torn BH). Credit: NASA / CXC / M. Weiss

Tidal Disruption Events

M87

EVENT HORIZON TELESCOPE COLLABORATION/MAUNAKEA **OBSERVATORIES/ASSOCIATED PRESS**

Gamma Ray Bursts

Crab 965 years ago.

Newborn Pulsars

Credits: X-ray: NASA/CXC/ASU/J.Hester et al.; Optical: NASA/HST/ASU/J.Hester et al.

SWIFT NEUTRON STAR COLLISION V. 2

Artist's rep BH-BH merger. Credit: NASA / JPL/

Swinburne Astron.Prods

ANIMATION: DANA BERRY 310-441-1735 **PRODUCED BY ERICA DREZEK**

Transient Neutrino Point Source Sensitivity

Long Bursts

Fang & Metzger, arXiv:1707.04263

Venters et al. arXiv:1906.07209 and AVO et al. arXiv:2012.0794

POEMMA Predecessors

Based on OWL 2002 study, JEM-EUSO, EUSO balloon & SPB experience, and CHANT proposal

EUSO-SPB Extreme Universe Space Observatory on a Super Pressure Balloon

POCKOCMOC

Ш.

оролёва

00

EUISO-SPB2

Cherenkov

UHECRs

Fluoresce

EUSO

SPB2

......

HECRS

Cherenkov Emission from CRs > PeV Tau Neutrino Targets of Opportunity and Background Fluorescence from UHECRS > EeV

Cherenkov

Tau Neutrino

Tau lepton

EUISO-SPB2 Extreme Universe Space Observatory on NASA Super Pressure Balloon

EUSO-SPB2 objectives:

Altitude of ~ 33km, from Wanaka, NZ around the Southern Ocean

1. observe 1st extensive air showers with fluorescence from suborbital space;

2. observe Cherenkov light from extensive air showers initiated by cosmic rays;

3. measure the background for the detection of neutrino induced upward going air showers;

4. search for neutrinos from astrophysical transient events (e.g., binary neutron star mergers).

Fluorescence Telescope

points down Schmidt Optics, 37.4° x 11.4° FoV MAPMT camera, 6,912 pixels 1 µs integration rate

Cherenkov <u>Te</u>lescope

points +- 5 deg below/above limb of the Earth Schmidt Optics, FoV: 6.4° zenith 12.8 ° azimuth SiPM camera, 512 pixels 10ns picture rate

Geant4 of Optics

BUSO-SPB2

Fluorescence Telescope

points down Schmidt Optics, 37.4° x 11.4° FoV MAPMT camera, 6,912 pixels 1 µs integration rate

Infrared Camera

Observes cloud coverage 70° x 53° FOV, 640 x 480 pixels 9.7-11.3µm and 11.6-12.7µm 1 image every 2 mins

Cherenkov

Telescope

points +- 5 deg below/above limb of the Earth Schmidt Optics, FoV: 6.4° zenith 12.8 ° azimuth SiPM camera, 512 pixels 10ns picture rate

IEUSO-SPB2

Fluorescence from UIHECRS

Fluorescence

UHECRS

EUSO-SPB2.

Cherenkov Emission from CRs

CRSESPev

Cummings et al. arXiv:2105.03255

IEUSO-SPB2

Cherenkov Emission from CRs and Neutrinos Cherenkov

CRs E > PeV

ton Jau Naussin

Target of Opportunity Neutrino Searches

Sky Map of acceptance to tau-neutrino 30-day (left) and 100-day (right) flights

Sensitivity to ToO neutrino flux per decade in energy, for long and a short emitters (all-flavor)

Venters, et al, *PoS(ICRC2021)*, 977 (2021).

Field Test of the Cherenkov Telescope Telescope Array site in Utah March 2022

George

Vlahd

nce

Jim K

Trace of Pixel 301

ThermoVac Test of Fluorescence Camera

ThermoVac Test of Infrared Camera

8

EUISO-SPB2 2023 flight

Fluorescence from UHECRS Cherenkov Emission from UHECRs Tau Neutrino Events (ANITONS?!)

Science Results:

Cherenko

Tan.

- Fluorescence from ~30 UHECRS
- CR spectrum from 10¹⁵ eV to 10¹⁷eV

Tau Neutrino

CRs E > PeV

- 2 Tau Neutrino candidates from GW230423
- Constraints on sANITONs

UHECRs /

Fluorescence

Astroparticle Physics Questions:

What are the sources of the **Ultra-High Energy Cosmic Rays** (UHECRs)? Measure Spectrum, Composition, Anisotropies E>10¹⁹ eV = 10 EeV

What are the sources of **Astrophysical Neutrinos**?

Multi-Messenger coincidence gamma-ray, gravitational waves, and neutrinos with $E>10^{16} eV = 10 PeV$

What is the physics and astrophysics at energies >> "ground-based" accelerators?

POEMMA

UIHECR and Neutrino Observations

Earth's Atmosphere = Particle Observatory to discover the Origin of the Highest Energy Cosmic Rays (E>10¹⁹ eV) and High Energy Neutrino Emission (E>10¹⁶ eV) from Astrophysical Events and Study New Astro/Physics

