

Silicon Meta-Shell X-ray Optics for Astronomy: High Resolution, Light Weight, and Low Cost

William W. Zhang NASA Goddard Space Flight Center

K.D. Allgood¹, M.P. Biskach¹, K.W. Chan², T.A. DeVita¹,
M. Hlinka¹, C.D. Hovis, J.D. Kearney¹, J.R. Mazzarella¹,
R.S. McClelland, A. Numata¹, R.E. Riveros², T.T. Saha,
P.M. Solly¹, and W.W. Zhang
NASA Goddard Space Flight Center
¹ also Stinger Ghaffarian Technologies, Inc.
² also University of Maryland, Baltimore County

Developing X-ray optics technology of ever <u>higher</u> resolution, <u>lighter</u> weight, and <u>lower</u> cost.

Lynx Mirror Assembly in Context

1.2m diameter	0.4m Diameter	3.0m diameter
0.5" PSF	58" PSF	0.5" PSF
19 m ² mirror area	44 m ² mirror area	372 m ² mirror area
~1,200 kg mass	~40 kg mass	~1,200 kg mass
<image/>		

Chandra (1999)

NuSTAR (2012)

Lynx (~2036)

Major Steps to Build the Lynx Mirror Assembly

Technology Development

Engineering Development

Mirror Module

Materials (relative proportions):

- <u>Silicon: 10,000,000.</u>
- <u>Coatings (Cr, Ir, SiO₂): ~1.</u>
- <u>Epoxy: ~1.</u>

Key Characteristics:

- Athermal:
 - Easy to test on ground.
 - Easy thermal control on orbit.
- Verifiable on ground:
 - Science performance.
 - Spaceflight environment.

Central Plate: 200 mm by 90 mm by 10 mm

Primary Mirror Segment: 100 mm by 100 mm by 0.5 mm

Secondary Mirror Segment: 100 mm by 100 mm by 0.5 mm

Mirror Segment

Two Precision Parts of a Mirror Segment:

- Front surface: < 10 nm deviation from prescription.
- **Rib thickness**: < 20 nm deviation from prescription.

Process of Building a Module

William W. Zhang (NASA GSFC)

Image Quality Improvement Over Time

Color Scale: Log

0.83" HPD

4.5 keV X-rays

Technology Status

- We have devised and empirically validated an approach for building high-resolution, lightweight X-ray optics. This approach has four basic technical elements
 - Substrate fabrication,
 - Coating,
 - Alignment, and
 - Bonding
- We are in the process of building and testing mirror modules of ever higher level of integration to advance the technical readiness level.
 - More mirror segments,
 - More stringent spaceflight environment requirements,
 - More efficient process, in terms of both production time and cost.

Major Milestones (COVID-19 may force change to this timeline)

- TRL-3: Build and test **1**-pair modules continually.
 - Reach and go beyond Lynx's 0.5" HPD requirement, and
 - Achieve structural robustness for spaceflight.
- TRL-4: Build and test **3**-*pair* modules by March 2021.

– Achieve images better than 0.5" HPD & structural robustness.

- TRL-5: Build and test *many-pair* modules by September 2023.
 - Meet 0.5" HPD image requirement, and
 - Pass environmental tests: vibration, acoustic, thermal-vacuum, and shock.
- TRL-6: Build and test several Lynx modules by September 2027.
 - Ensure that Lynx mirror can be built on schedule and budget, and
 - Meet all performance and spaceflight environment requirements.

- Suborbital mission
 - OGRE (Off-plane Gratings Rocket Experiment),
 PI: R. McEntaffer (PSU).
- Explorer-class missions
 - STAR-X (Survey and Time-domain Astrophysical Research Explorer), PI: W. Zhang (GSFC).
 - FORCE (Focusing on Relativistic universe and Cosmic Evolution),
 PI: K. Mori (Miyazawa Univ., Japan).
- Probe-class missions
 - AXIS (Advanced X-ray Imaging Satellite), PI: R. Mushotzky (Univ. of MD).
 - TAP (Transient Astrophysics Probe),
 - HEX-P (High Energy X-ray Probe),
- Flagship mission
 - Lynx (formerly known as the X-ray Surveyor), Study Scientist: J. Gaskin (MSFC).
- **PI:** J. Camp (GSFC). **PI:** F. Harrison (Caltech).

This work has been supported by NASA through GSFC/IRAD, ROSES/APRA, and ROSES/SAT.