LYNX X-RAY OBSERVATORY

PROVEN ARCHITECTURE DESIGNED for LONG LIFE

anew GREAT OBSERVATORY

STRONG HERITAGE MATURE TECHNOLOGIES RELIABLE COST

WE KNOW HOW TO BUILD

37,492 SEGMENTS 611 MODULES

SCALEABLE

PARRALLIZABLE

IT NOW

12 META-SHELLS

1 ASSEMBLY

COSTED

t h e D A W N o fBLACK HOLES

a new GREAT OBSERVATORY

t h e D R I V E R S o fGALAXY EVOLUTION

the ENERGETIC SIDE ofSTELLAR EVOLUTION

- Black holes define many aspects of cosmic evolution
- Were in place very early in the history of the Universe

the DAWN of BLACK HOLES

• What is their origin? Light seeds or heavy seeds? Did any of the massive BH form directly into $10^5 M_{Sun}$ objects?

Key observations: surveys over ~1 deg² down to $f_X \sim 10^{-19}$ erg s⁻¹ cm⁻² to detect black hole seeds with $M_{BH} = 10,000 M_{SUN}$ at z = 10

the DAWN of BLACK HOLES

Servations: so $f_{\rm X} \sim 10^{-19}$ er

Key observations: s down to $f_X \sim 10^{-19}$ er black hole seeds wit at z = 10

modeled heavy seed

Lynx, 4 Msec

 $\bigcirc \bigcirc$

lower-z galaxy

lower-z AGN

 \bigcirc

the DRIVERS of GALAXY EVOLUTION

- Exquisite data available on stellar, dust, and cold gas contents of galaxies.
- Yet, there is a dearth of understanding of their exact formation mechanism
- Main drivers are inprinted in hot CGM and in signatures of on-going feedback

ontents of galaxies. rmation mechanism **res of on-going feedback**

the DRIVERS of GALAXY EVOLUTION

the DRIVERS of GALAXY EVOLUTION FEEDBACK in ALL MODES, on ALL SCALES-----

• We are in the era of multi-messenger astronomy. Planet studies evolve to holistic assessment of habitable conditions. Leaps in data on star formation are needed to understand the galaxies and cycles of elements. • Science needs include observations of key high-energy processes associated with stellar birth, life, and death.

the ENERGETIC SIDE of STELLAR EVOLUTION

the MILKY WAY

HORIZON 5 kiloparsecs

CHANDRA HORIZON 400 parsecs

STELLAR DEATH in 3D

 \bigcirc

0

 \bigcirc

Optical composite

STELLAR DEATH, EXTRAGALACTIC

Chandra-detected Supernova Remnant

3' (700 pc)

- Statistical samples of SNRs (age, type, etc.)
- SN activity & relation to on-going star formation
- Sensitive XRB studies beyond the Local Group

STELLAR DEATH, EXTRAGALACTIC

t h e D A W N o fBLACK HOLES

a new GREAT OBSERVATORY

t h e D R I V E R S o fGALAXY EVOLUTION

the ENERGETIC SIDE ofSTELLAR EVOLUTION

Cosmic Dawn, Galaxy Formation, Black Holes, Origin of Elements

Cosmology, Resolved Stellar Populations, Solar System Observations, Multi-Messenger Astronomy

SIGNIFICANT IMPACT on

Planets, Protoplanetary Disks, Very High Energy Astrophysics

CRITICAL ADVANCES in

MAJOR IMPACT on

the HOT andENERGETIC UNIVERSE

DRIVERS of GALAXY EVOLUTION

LYNX DISCOVERY SCIENCE DOMAIN & MULTI-MESSENGER ASTRONOMY I M E

- •Lynx can respond to a subset of ToOs within 3 hours of trigger
- Will rely on extreme sensitivity, sharp angular resolution & spectroscopic capabilities:
- -X-ray chirp signal from merging supermassive black holes
- Followup of LIGO A+ events
- Prompt spectroscopy of gamma-ray burst afterglows

LYNX DISCOVERY SCIENCE COSMIC DAWN & the EPOCH of REIONIZATION

STACKED

FIDUCIAL X-RAY OUTPUT

DIRECT

EXTREME X-RAY OUTPUT

z = 9**REDSHIF**

REIONIZATION

High-redshift star formation traced by X-ray binaries activity

Extrapolation of XRB populations to the Epoch of Reionization

Cross-correlation with 21cm signals

HEATING

DARK AGES

z = 19

First generation: LOFAR, MWA, PAPER

 ΔT , mK

LYNX DISCOVERY SCIENCE the LEGACY FIELD

- AGN Surveys
- LSS
- Cosmology
- Galaxy Evolution
- Cosmic Web

Every HDXI 100 ksec footprint is deeper than the 7 Msec Chandra Deep Field

Lower z clusters & groups –

High z AGN point sources.

5'

HDXI, 100 ksec, 0.5 - 2 keV

Nobody ever measures the stellar mass. That is not a measurable thing; it's an inferred quantity. You measure light, OK? You can measure light in many bands, but you infer stellar mass. Everybody seems to agree on certain assumptions that are completely unproven.

<u>Carlos Frenk, 2017 May 15</u> (44:48)

Order-of-magnitude variations in brighness when stellar field shifts by 10s of μ as.

Macrolensing gives full mass

Microlensing gives mass in stars

Chandra results: $M^*/L = 1.2 \pm 0.6$ Salpeter

— LYNX DISCOVERY SCIENCE the STELLAR IMF via QUASAR MICROLENSING

exquisite post-LSST

by 100,000 Zoom-i

Lensing Galaxy

