What will LISA reveal about black hole astrophysics?

Emanuele Berti, University of Mississippi GW SIG Minisymposium, Apr 14 2018

LIGO/Virgo: 5.87 confirmed stellar mass black hole mergers + GW170817

List of binary merger events																
	Detection	Dete	Location	Luminosity	Energy	Chirp	Pri	mary	Seco	ondary		Remnan	t			
GW event 🗢	time ¢ (UTC)	published \$	area ^[n 1] ≑ (deg ²)	distance ♦ (Mpc) ^[n 2]	radiated (c ² M₀) ^[n 3]	mass ♦ (M₀) ^[n 4]	Type ¢	Mass (M₀) ◆	Type \$	Mass (M₀) \$	Type 🗢	Mass (M₀) ◆	Spin ^[n 5] ¢	Notes	\$	
GW150914	2015-09-14 09:50:45	2016-02-11	600; mostly to the south	440 ⁺¹⁶⁰ _180	3.0 ^{+0.5} _{-0.5}	28.2 ^{+1.8} -1.7	BH ^[n 6]	35.4 ^{+5.0} _3.4	BH ^[n 7]	29.8 ^{+3.3} _4.3	BH	62.2 ^{+3.7} -3.4	0.68 +0.05 -0.06	First GW detection merger observed; I progenitor masses	; first BH largest to date	
LVT151012 (fr)	2015-10-12 09:54:43	2016-06-15	1600	1000 ⁺⁵⁰⁰ -500	1.5 ^{+0.3} _{-0.4}	15.1 ^{+1.4} -1.1	BH	23 ⁺¹⁸ _6	BH	13 ⁺⁴ -5	BH	35 ⁺¹⁴ _4	0.66 ^{+0.09} _0.10	Not significant eno confirm (~13% cha noise)	ugh to Ince of being	
GW151226	2015-12-26 03:38:53	2016-06-15	850	440 ⁺¹⁸⁰ ₋₁₉₀	1.0 ^{+0.1} _0.2	8.9 ^{+0.3} _0.3	BH	14.2 ^{+8.3} -3.7	BH	7.5 ^{+2.3} -2.3	вн	20.8 ^{+6.1} _1.7	0.74 ^{+0.06} _0.06			
GW170104	2017-01-04 10:11:58	2017-06-01	1200	880 ⁺⁴⁵⁰ -390	2.0 ^{+0.6} _0.7	21.1 ^{+2.4} _2.7	BH	31.2 ^{+8.4} -6.0	BH	19.4 ^{+5.3} -5.9	BH	48.7 ^{+5.7} -4.6	0.64 ^{+0.09} _0.20	Farthest confirmed	event to date	
GW170608	2017-06-08 02:01:16	2017-11-16	520; to the north	340 ⁺¹⁴⁰ _140	0.85 ^{+0.07} _0.17	7.9 ^{+0.2} _{-0.2}	вн	12 ⁺⁷ _2	BH	7 <mark>+2</mark> -2	вн	18.0 ^{+4.8} _0.9	0.69 ^{+0.04} _0.05	Smallest BH proge to date	nitor masses	
GW170814	2017-08-14 10:30:43	2017-09-27	60; towards Eridanus	540 ⁺¹³⁰ _210	2.7 ^{+0.4} _{-0.3}	24.1 ^{+1.4} _1.1	BH	30.5 ^{+5.7} -3.0	BH	25.3 ^{+2.8} _4.2	BH	53.2 ^{+3.2} -2.5	0.70 ^{+0.07} _0.05	First detection by the observatories; first measurement of po	hree olarization	
GW170817	2017-08-17 12:41:04	2017-10-16	28; NGC 4993	40 ⁺⁸ -14	> 0.025	1.188 ^{+0.004} _0.002	NS	1.36 - 1.60 ^[n 8]	NS	1.17 - 1.36 ^[n 9]	BH ^[n 10]	< 2.74 ^{+0.04} _0.01 [n 11]		First NS merger ob GW; first detection counterpart (GRB 2017gfo); nearest of	oserved in of EM 170817A; AT event to date	

2030s: Einstein Telescope vs. LISA

[Sesana,1602.06951]

[Figure courtesy of Neil Cornish]

Multiband binaries

Massive black holes

Can we tell apart models with different growth/merger physics?

Models chosen to have different

- Seeds: light or heavy?
- Metallicity Z: efficiency of gas inflow
- Accretion efficiency: Eddington vs. Merloni-Heinz
- Accretion geometry: coherent vs. chaotic

[Sesana+, 1011.5893]

Black hole spins encode growth history

Growth by:

Mergers only: spin ~0.7

Mergers+coherent accretion: spin close to one

Mergers+chaotic accretion: spin close to zero

[EB+Volonteri, 0802.0025; Sesana+, 1402.7088]

How many binaries can we detect? Can we measure parameters/localize?

	Δm_{1z}	$_{2z}/m_{1z,2z}$	< 0.01	Δ	$\chi_1 < 0.01$			$\Delta \chi_2 < 0.$	1	$\Delta \theta_{\chi_1}$	$_{1,2}$ < 10 d	eg		$\Delta \chi_r < 0.1$						
Configuration ID	popIII	Q3-nod	Q3-d	popIII	Q3-nod	Q3-d	popIII	Q3-nod	Q3-d	popIII	Q3-nod	Q3-d	popIII	Q3-nod	Q3-d					
N2A5M2L6	146.6	141.8	13.3	45.3	76.8	2.6	41.8	44 7	39	21.0	40.9	94	3.5	31.4	10.9			all d	etection	ls, T=5yr, S/N>8
N2A5M2L4	94.6	108.5	11.3	32.4	60.5	2.1	21.2	27.2	2.5	11.5	19.1	4.8	3.0	18.5	10.7			SUA		SUA IMR
N2A2M2L6	71.4	99.6	10.9	28.3	54.4	2.0	17.1	22.2	2.1	11.7	18.9	5.1	3.3	27.0	10.5	c	10			$\exists \vdash \uparrow \neg \uparrow \neg \neg \neg \neg$
N2A2M2L4	40.7	69.1	8.4	19.6	40.8	1.5	8.2	11.1	1.1	6.0	7.7	2.3	2.9	17.0	10.2	aii	10	E		3E 🔺 3
N2A1M2L6	30.4	66.4	8.5	18.7	39.3	1.5	7.4	10.8	1.0	6.1 2.1	9.2	2.9	3.1	21.3	9.5	୍ଘ		F		4F 💉 🦯 4
N2ATM2L4 N1A5M2L6	15.5	41.2	0.3	13.4	27.0	1.0	3.8 7.3	4.9	0.6	5.1	5.0	1.0	2.9	12.5	9.5	ŝ			/ 🖌 👘	
N1A5M2L0	40.7	29.5	7.0 4 7	14.6	29.8	0.9	3.6	8.0 3.7	0.0	2.5	2.2	0.6	27	16.5	10.3	SO				16 🖌 🖌 🖂 1
N1A2M2L6	11.6	20.4	3.2	12.6	12.6	0.2	2.2	2.4	0.2	1.8	2.2	0.6	2.7	15.0	9.2	-	1			╶╡╞╌┈ ╅╌╱╬╱╶╧╸╌┷╌╌┷╶╌┷ ┈╌╡
N1A2M2L4	4.4	10.1	2.3	7.5	8.2	0.1	1.1	1.0	0.1	0.8	0.6	0.2	2.6	12.1	9.2	ve		E 🖌		1 E 🌋 🎽 🛛 1
N1A1M2L6	3.3	8.7	2.4	4.8	5.7	0.1	0.6	0.6	0.1	0.7	0.6	0.2	2.2	9.1	6.6	Ę.		E 🛃 🖆		
N1A1M2L4	1.6	3.8	1.0	2.4	3.3	0.0	0.3	0.4	0.1	0.3	0.2	0.1	2.1	7.8	6.4	ela				
				-												Re	0 1			
		ΔΩ <	< 10 de	g ² & Δ1	$D_1/D_1 <$	0.1 &	<i>z</i> < 5			z	; > 7 & .	$\Delta D_1/$	$D_1 < 0.$	3			10 ³			
				0	<i>ii i</i>		-			arri		.,				er		Ę,		∃E = <u>→</u> <u>→</u> -
		S	UA			SUA	IMR			SUA			SU	JA IMR		ą				∃F &= = = = =
Configuration I	D pop	Q3	3-nod	Q3-d	popIII	Q3-	-nod	Q3-d	popIII	Q3-no	od Q3-	d po	opIII	Q3-nod	Q3-d	un			×	
N2A5M2L6	14	.5 3	34.8	6.0	16.1	47	7.4	10.1	71.6	117.2	2 1.2	7	71.6	141.1	1.4	ц 1	100			
N2A5M2L4	3.	2	8.7	1.1	4.8	16	5.0	4.9	10.2	54.4	0.6	3	30.4	96.8	1.0	ŗ	100	E TIK		3E 🖌 🖉 🗧
N2A2M2L6	6.	8 2	23.2	3.8	9.2	35	5.2	9.5	20.8	82.6	0.9	2	20.8	134.4	1.4	Γ		E 🔺 / 👝	-	
N2A2M2L4	1.	6 4	4.2	0.4	2.6	5	.8	1.6	2.8	18.0	0.2	1	0.1	54.0	0.7	osi				
N2A1M2L6	3.	4 1	4.9	2.5	5.7	26	5.4	7.8	3.9	50.9	0.6		3.9	120.1	1.3	Al				
N2A1M2L4	0.	6	1.7	0.1	1.0	2	.6	0.5	0.5	0.8	0.0		2.6	41.8	0.2		10			
N1A5M2L6	4.	0 1	3.7	1.9	7.0	27	7.3	7.5	9.8	30.5	0.4		9.9	111.9	1.2			NS 112	UNS WS	R 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
N1A5M2L4	0.	7	1.6	0.0	1.2	2	.6	0.2	1.3	2.2	0.0		5.2	9.0	0.2			2222	N .N	5 5 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
N1A2M2L6	1.	9 :	5.1	0.8	4.4	18	8.0	5.5	2.3	6.6	0.2		2.4	77.7	1.0			5 5 5 5 4 4	÷ ~	~ ~ ~ ~ ~ ~ ~
N1A2M2L4	0.	4	0.5	0.0	0.6	1	.0	0.1	0.2	0.4	0.0		1.0	2.0	0.0					
N1A1M2L6	0.	7	1.5	0.2	2.7	9	.8	3.9	0.2	0.1	0.0		0.5	0.4	0.6					
N1A1M2L4	0.	2	0.2	0.0	0.2	0	.3	0.0	0.0	0.0	0.0		0.0	0.0	0.0					

[Klein+, 1511.05581]

Can we tell models apart?

Extreme mass ratio binaries

EMRIs: rates, G	R tests, new p	hysics?
-----------------	----------------	---------

	Mass	MBH	Cusp	М–σ		СО		EMRI rate [yr ⁻¹]	
Model	function	spin	erosion	relation	$N_{\rm p}$	mass $[M_{\odot}]$	Total	Detected (AKK)	Detected (AKS)
M1	Barausse12	a98	yes	Gultekin09	10	10	1600	294	189
M2	Barausse12	a98	yes	KormendyHo13	10	10	1400	220	146
M3	Barausse12	a98	yes	GrahamScott13	10	10	2770	809	440
M4	Barausse12	a98	yes	Gultekin09	10	30	520 (620)	260	221
M5	Gair10	a98	no	Gultekin09	10	10	140	47	15
M6	Barausse12	a98	no	Gultekin09	10	10	2080	479	261
M7	Barausse12	a98	yes	Gultekin09	0	10	15800	2712	1765
M8	Barausse12	a98	yes	Gultekin09	100	10	180	35	24
M9	Barausse12	aflat	yes	Gultekin09	10	10	1530	217	177
M10	Barausse12	aO	yes	Gultekin09	10	10	1520	188	188
M11	Gair10	aO	no	Gultekin09	100	10	13	1	1
M12	Barausse12	a98	no	Gultekin09	0	10	20000	4219	2279

Rates very uncertain (1-10⁴/yr): depend on

Low-mass MBH mass function, spin, cusp erosion post-merger, M- σ , ratio of direct plunges to EMRIs, waveform model

- Tests of GR: Kerr BH quadrupole within $\Delta Q \sim 10^{-4}$
- New physics: Dark matter, scalar clouds (e.g. axions) modify dynamics
- New astrophysics: Multiband EMRIs, standard candles

[Babak+, 1703.09722]

Astrophysics / physics payoff

Multiband black hole binaries

[Sesana,1602.06951; 1702.04356]

- LISA early warning (Δt_{merger}~1s) and localization (ΔΩ~0.1-1deg²) for LIGO/EM observations
- LISA can measure eccentricity: Clusters? [Rodriguez+] Triples? [Antonini+] Primordial BHs? [Cholis, Kovetz+]
- LISA improvements on LIGO PE [Vitale 1605.01037]
- New population of standard sirens [Del Pozzo+ 1703.01300]

[Sesana,1602.06951]

Better tests of GR [Yunes' talk]

2030s: 3G (e.g., ET) vs. LISA

[Sesana,1602.06951]

[Figure courtesy of Neil Cornish]

- Limited improvements on 3G PE GW150914: SNR~700 (2000) in Voyager (Cosmic Explorer)
- LISA breaks degeneracies: (χ_1, χ_2) from LISA, χ_{eff} and χ_f from LIGO M_{chirp} from LISA, M from LIGO
- IMBHs?
- Post-process LISA data after 3G detection: boost LISA multiband event rates
- Use 3G detections to remove foreground and go after stochastic backgrounds
- Use LISA for 3G phase/amplitude calibration

2030s: 3G (e.g., ET) vs. LISA

[Figure courtesy of Neil Cornish]

Kozai around MBHs [Antonini, 1509.05080] or primordial black holes [Cholis+, 1606.07437] can generate large eccentricity in LISA band

$$e \sim f^{-19/18} \sim f^{-1}$$

Measurable if $e_0 > 10^{-3}$ at f=10⁻²Hz

[Nishizawa+, 1605.01341; 1606.09295]

Field or cluster formation? Kozai or primordial black holes?

	σ	4	$s\sigma$			
	N_{90}	N_{50}	N_{90}	N_{50}	$N_{\rm obs}$	eLISA base
Not enough detections	>100	95	>100	35	11-78	N2A2-2y
-	>100	80	95	34	85-595	N2A5-2y
5σ confidence	100	61	60	25	45-310	N2A2-5y
with 0.0% probability	100	60	62	25	330-2350	N2A5-5y
with 50% probability						

Table 1. Expected number of sources (column 2) for each eLISA baseline (column 1), compared with the number of observations needed to distinguish between models *field* and *cluster* at a given confidence threshold in 50% (N_{50}) and 90% (N_{90}) of the cases (columns 3-6).

Predictions may be **pessimistic!**

Correlations between e and masses/spins/kicks will help Can ask the same question for **MBH vs. primordial** scenarios

> [Nishizawa+,1606.09295] [Breivik+, 1606.09558]

Independent assessment of geometry of the Universe at all z

Example of possible eLISA cosmological data

PHYSICAL REVIEW D 83, 044036 (2011)

Reconstructing the massive black hole cosmic history through gravitational waves

Alberto Sesana,^{1,*} Jonathan Gair,^{2,†} Emanuele Berti,^{3,4,‡} and Marta Volonteri^{5,§}

PHYSICAL REVIEW D 93, 024003 (2016)

Science with the space-based interferometer eLISA: Supermassive black hole binaries

Antoine Klein,¹ Enrico Barausse,^{2,3} Alberto Sesana,⁴ Antoine Petiteau,⁵ Emanuele Berti,^{1,6} Stanislav Babak,⁷ Jonathan Gair,^{8,9} Sofiane Aoudia,¹⁰ Ian Hinder,⁷ Frank Ohme,¹¹ and Barry Wardell^{12,13}

PHYSICAL REVIEW D 94, 064020 (2016)

eLISA eccentricity measurements as tracers of binary black hole formation

Atsushi Nishizawa,^{1,*} Emanuele Berti,^{1,2,†} Antoine Klein,^{1,2,‡} and Alberto Sesana^{3,§}

PHYSICAL REVIEW D 95, 103012 (2017)

Science with the space-based interferometer LISA. V. Extreme mass-ratio inspirals

Stanislav Babak,¹ Jonathan Gair,² Alberto Sesana,³ Enrico Barausse,⁴ Carlos F. Sopuerta,⁵ Christopher P. L. Berry,³ Emanuele Berti,^{6,7} Pau Amaro-Seoane,^{5,8} Antoine Petiteau,⁹ and Antoine Klein⁴

Extra slides

Eccentricity: measurable if e_0 > 10^{-3} at f=10^{-2}Hz 0.4N2A5, 5yrs N2A1, 5yrs 0.3N2A5, 2yrs N2A1, 2yrs 0.2e₀=0.1 0.10.0 0.30.2pe₀=0.01 0.10.0 0.40.3e₀=0.001 0.20.1 $0.0 \frac{10^{-7}}{10^{-7}}$ $\{T_{ij}\}_{i \in I}$ 10^{-6} 10^{-2} 10^{-5} 10^{-4} 10^{-3} [Nishizawa+,1606.09295] Δe_0

Correlations

Earth vs. space-based: ringdown detections and black hole spectroscopy

Earth vs. space-based: redshift distribution

Time of arrival: seconds, localization: <1 deg²

[Sesana,1602.06951]

Errors on primary (circles) and secondary (diamonds) spins

[Vitale, 1605.01037]