Probing the Hot and Energetic Universe: X-rays and Astrophysics

Physics of the Cosmos mini-symposium X-ray Science Interest Group

Meeting of the American Physical Society Salt Lake City, UT

April 17, 2016

R. Kraft¹ and M. Bautz² ¹Harvard/Smithsonian Center for Astrophysics ²MIT Kavli Institute for Astrophysics and Space Research

The X-ray Universe

Present

NuSTAR

Future

Chandra/Spitzer/Hubble observation of z=1.75 cluster of galaxies IDCS J1426.5+3508 (Brodwin+2015,2016)

$$M_{R500,Y_X} 2.6^{+1.5}_{-0.5} \times 10^{14} M_{\odot}$$

•Highest redshift cluster with X-ray, SZ, and lensing estimates of gravitating mass.

No detection of heavy metals (Z<0.18 at 2 sigma)
Dense, low entropy core – one of few cool core clusters known beyond z=1
Identified as part of IRAC Distant Cluster Survey
This one object does not put stress on ΛCMD.

X-ray Follow-up to Gravitational Wave Sources

- ALIGO detection (Abbott+2016) of a BH-BH merger has energized the physics/astrophysics communties!
- Electromagnetic follow-up can provide a wealth of information about compact object mergers:
 - sGRB have short (2 s) burst of high energy emission and longer panchromatic afterglow (Metzger and Berger 2012)
 - Combination of GW and EM signals provide mass, distance, inclination, luminosity, redshift, and duration constrain energetics and (potentially) cosmology

SWIFT unsuccessfully searched for EM counterpart to the GW150914 event (Evans+2016) Future X-ray mission concepts are likely to be developed to optimize follow-up efficiency

Nuclear Spectroscopic Telescope Array (NuStar)

NuSTAR Sees Titanium Glow in Supernova 1987A

Detection of narrow emission lines at 67.87 and 78.32 keV from the decay of ⁴⁴Ti
Lines are redshifted by ~700 km s⁻¹
Direct evidence of asymmetric explosion (Boggs+2015)

Hitomi observation of Perseus Cluster

Chandra image of Perseus cluster (Fabian+2005)

- Nearby massive cool core cluster
- Observed with Hitomi SXS through Be filter (Fabian+2016, in press)
- Calorimeter resolution ~4.8 eV (CCD resolution 120 eV)
- Can resolve turbulent broadening, bulk motions, etc.

Simulated Hitomi SXS spectrum around Fe XXV K_{α} line

Athena (Astrophysics of the Hot and Energetic Universe)

•ESA L class mission with substantial international contributions
•Primary science themes:

- •How does ordinary matter assemble into the structures that we see today?
- •How do black holes form and grow?
- •Launch date: 2028
- •http://www.the-athena-x-ray-observatory.eu

Two science instruments: X-ray Integral Field Unit (XIFU) microcalorimeter and Wide-Field Imager DEPFET sensor array

Parameter	Requirements	Enabling technology/comments
Effective Area	2 m² @ 1 keV (goal 2.5 m²) 0.25 m² @ 6 keV (goal 0.3 m²)	Silicon Pore Optics developed by ESA. Single telescope: 3 m outer diameter, 12 m fixed focal length.
Angular Resolution	5" (goal 3") on-axis 10" at 25' radius	Detailed analysis of error budget confirms that a performance of 5" HEW is feasible.
Energy Range	0.3-12 keV	Grazing incidence optics & detectors.
Instrument Field of View	Wide-Field Imager: (WFI): 40' (goal 50')	Large area DEPFET Active Pixel Sensors.
	X-ray Integral Field Unit: (X-IFU): 5' (goal 7')	Large array of multiplexed Transition Edge Sensors (TES) with 250 micron pixels.
Spectral Resolution	WFI: <150 eV @ 6 keV	Large area DEPFET Active Pixel Sensors.
	X-IFU: 2.5 eV @ 6 keV (goal 1.5 eV @ 1 keV)	Inner array (10"x10") optimized for goal resolution at low energy (50 micron pixels).
Count Rate Capability	> 1 Crab ³ (WFI)	Central chip for high count rates without pile-up and with micro-second time resolution.
	10 mCrab, point source (X-IFU)	Filters and beam diffuser enable higher count
	1 Crab (30% throughput)	rate capability with reduced spectral resolution.
TOO Response	4 hours (goal 2 hours) for 50% of time	Slew times <2 hours feasible; total response time dependent on ground system issues.

Key Parameters of Athena Mission

Athena Science

Euclid/LSST/numerical simulations will constrain how dark matter structures assemble. X-ray observations are required to understand the evolution of the baryons (Nandra +2013)

Simulated XIFU spectrum of a small region of the Perseus cluster (Nandra+2013). ACIS-S spectrum (blue histogram) shown for comparison.

extended Roentgen Survey with an Imaging Telescope Array (eRosita)

- Primary instrument on Russian Spectrum Roengten Gamma (SRG) mission
- First imaging all sky survey up to 10 keV – unprecedented sensitivity
 - Will detect up to 100,000 clusters of galaxies, and map diffuse filaments between clusters
 - Will detect ~3E6 AGN
 - Study in unprecedented detail the Galactic X-ray source populations
- Seven Wolter-1 mirror modules and framestore PN CCD
- Launch scheduled for 2018

Survey sensitivity for extended sources (Merloni+2012)

X-ray Surveyor – A Major Leap in Sensitivity

- One of four large mission concepts selected by NASA HQ to be studied for 2020 NRC **Decadal Survey.**
- Science and technology team (STDT) selected -A. Vikhlinin (SAO) and F. Ozal (Arizona) co-chairs
- STDT will determine • science priorities and mission requirements
 - Must deliver "compelling and executable concept"

 L_X is due to bright high-mass X-ray binaries born within $\sim 10^7$ years of the starburst

 $L_X = 5 \times 10^{39} \text{ergs}^{-1}$ per 1 M_{\odot}/yr of star formation in the 2-10 keV band unaffected by absorption

 4 Msec exposure detects L_x from HMXB's in a SFR = $2-20 M_{\odot}/yr$ galaxy at z = 10

~ 40 galaxies detectable in a single deep survey image

"galaxies"

 $2' \times 2$

Light seeds: PopIII star

remnants, MBH~10² MSun

star cluster, M_{BH}~10³

Msun

Massive seeds collapse of supermassive star or a quasi-star object, MBH~10⁵ MSun

4 Msec sensitivity corresponding to L_{Edd} for a SMBH progenitor with $M_{\rm BH} = 10,000 \ M_{\odot}$

Detect black holes of M~10,000 M_{solar} to z=10

Notional X-ray Surveyor Concept

Comparison of survey capabilities: Flux limit vs. area for a 15 Msec program

×800 higher survey speed at the Chandra Deep Field limit

SAO/MSFC Advanced Concepts Office study for one potential configuration of XRS (Gaskin+2015)

Cost (including LV) < \$3B

Diameter	3 m
Focal length	10 m
On axis HP diameter (1	
keV)	0.5 arc sec
	Wolter-
Design	Schwarzshild
FOV diameter (<1 arc sec)	15 arc min
Mirror shells	~300
Mirrors (segmented	
design)	10,000 to 50,000
Effective area @ 1 keV	
(mirror only)	~2.5 m ²
Nominal bandwidth	0 1 - 10 keV

Potential optics requirements for XRS (courtesy of M. Schattenburg)

NICER: Neutron Star Interiors from the International Space Station

- NICER will determine precise (5%) radii of msec pulsars from spectrally-resolved X-ray pulse profiles (4 objects)
- Radii + (known) masses yield powerful constraints on EOS of ultra-dense matter in neutron star interiors
- NICER launch to International Space Station expected in January, 2017

Simulations show the assumed radius is recovered to $\pm 5\%$ with $\sim 10^6$ photons

X-ray Science Interest Group

- Contact Information
 - Mark Bautz <u>mwb@space.mit.edu</u>
 - Ralph Kraft <u>rkraft@cfa.harvard.edu</u>
- XRSIG website: <u>http://pcos.gsfc.nasa.gov/sigs/xrsig.php</u>
- Recent events:
 - HEAD meeting, Naples, FL, Apr 3-7, 2016
 - AAS meeting, Kissimmee, FL, Jan 4-8, 2016
 - Special HEAD meeting on High Energy Missions, Chicago, IL, Jun 29 – Jul 1, 2015
- Next Meeting
 - AAS meeting, Grapevine, TX, Jan, 2017