Cosmic Structures Science Interest Group (CoSSIG) Update

Olivier Doré, Rachel Bean JPL/Caltech, Cornell University

on behalf of the PhysPAG/Cosmic Structure SIG (CoSSIG)

CoSSIG: A New Science Interest Group

- NASA developing robust large scale structure (LSS) and supernovae (SN) portfolio
 - Committed to play a key role in the ESA led mission Euclid.
 - ➡ Committed to the WFIRST mission.
- CoSSIG to serve a broad community of those interested in using LSS and SN surveys for cosmology
- Science applications include those of the NRC 2010 Decadal Cosmology and Fundamental Physics panel:
 - → How did the universe begin?
 - ➡ Why is the universe accelerating (dark energy)?
 - → What is dark matter?
 - ➡ What are the properties of neutrinos?
- As we move towards the 2020 Decadal, CoSSIG provides important way to give inputs to NASA on future missions including quantitative metrics and issues.

CoSSIG Near Term Goals

- Making the CoSSIG science case for relevant flagship studies to be performed before the decadal survey.
- Identifying areas where NASA missions such as Euclid or WFIRST could benefit from synergistic activities with other other on-going programs.
- Identifying other NASA programs that can support CoSSIG science, e.g., suborbital, or other mission class, such as probes, midex and smex, e.g., SPHEREx now undergoing phase A.
- Highlight developments in, and requirements on, potential foreground contaminants and systematics and their mitigation for upcoming missions.
- Identify areas in which increased technical development is a priority
- Building the communication within the CoSSIG community
 - Co-leads: Rachel Bean (Cornell) & Olivier Doré (JPL/Caltech)
 - ➡ Please sign up and join us: blank email to <u>CoSSIG-subscribe@lists.nasa.gov</u>.
 - More info @ webpage: http://pcos.gsfc.nasa.gov/sigs/cossig.php

Dark Energy Requires a Modification to Einstein's Equation

- Each of these modifications will lead to different observational signatures either in the expansion history of the Universe or in the growth of large scale structures:
 - To observationally and unambiguously solve this puzzle will require multiple probes (also critical for cross-checks)

Multi-Probe Survey Approach

- NASA investment in upcoming "Stage IV" LSS and SN surveys, covers the full range of cosmological probes required to distinguish dark energy and modified gravity models
 - ➡ <u>Type IA SN</u>: standard candles to measure the expansion history (WFIRST)
 - Weak gravitational lensing: the apparent distortion of galaxy shapes by foreground dark matter measures the growth of structure (Euclid, WFIRST)
 - Galaxy clustering: Baryon acoustic oscillations (BAO) a standard ruler to measure the expansion history (Euclid, WFIRST)
 - Redshift space distortions (RSD): measure growth of structure (Euclid, WFIRST)
- WFIRST, Euclid along with ground-based Stage IV surveys, LSST and DESI, each provide valuable complementary datasets that comprise critical pieces needed to achieve percent level constraints on dark energy.
 - Key factors are systematic error mitigation in weak lensing measurements and complementarity of gravitational constraints from peculiar motions & lensing.
- Build on progress and lessons learned from a number of important current, near- term surveys (DES,HSC,Boss/e-BOSS, PFS)
 - ➡White paper: "The Whole is Greater than the Sum of the Parts: Optimizing the Joint Science Return from LSST, Euclid and WFIRST" <u>http://arxiv.org/abs/1501.07897</u>

Multi-Probe Analysis State of the Art

- Combined Planck, BOSS BAO and SDSS/SNLS SN yield constraints on Dark Energy equation of state consistent with ACDM.
- Progress: DES and HSC taking data and early science verification results.

WFIRST-AFTA Dark Energy/Cosmology Roadmap

Supernova Survey

High Latitude Survey

Olivier Doré APS, Physics of the Cosmos mini-Symposium, Salt Lake City, April 17th 2016

WFIRST: Hubble over Thousands Square Degrees

Olivier Doré APS, Physics of the Cosmos mini-Symposium, Salt Lake City, April 17th 2016

WFIRST: Hubble over Thousand Square Degrees

WFIRST Deep Field >1,000,000 galaxies in each image

http://wfirst.gsfc.nasa.gov/

WFIRST Updates

- Lots of progress on WFIRST in past 2 years:
 - ➡\$106M in FY14 & 15 has enabled major steps forward
 - Detector & coronagraph development
 - Design cycles, Project work
 - ➡ SDT 2014 & 2015 studies completed
 - ROSES community studies funded, \$2M
 - ➡ Dec '15: Mission Concept Review successfully passed
 - Dec '15: Formulation Science Working Group (FSWG) announced <u>http://wfirst.gsfc.nasa.gov/</u>
 - → Jan '16: Formulation (KDP-A) passed (now Phase-A!)
 - ➡ Feb '16: First FSWG meeting
 - Feb '16: Workshop on "Community Astrophysics with WFIRST: Guest Observer and Archival Science" in Pasadena
- Planned launch in ~2024

П

ЫN

WFIRST Formulation Science Working Group

- Serves as WFIRST's science executive committee:
 - 24 members
 - Project Scientists and Instrument Scientists from GSFC and JPL
 - STSci and IPAC are preparing for a joint WFIRST Science Centers
- 2 Adjutant Scientists:
 - David Spergel
 - Jeremy Kasdin
- Wide Field Instrument, Adjutant Scientist Coronograph Instrument, Adjutant Scientist
- 10 Science Investigation Teams:
 - Olivier Doré
 - Saul Perlmutter
 - ➡ Ryan Foley
 - Scott Gaudi
 - Bruce Macintosh
 - Margaret Turnbull
 - James Rhoads
 - Brant Robertson
 - Benjamin Williams
 - Alexander Szalay

Weak lensing and galaxy redshift survey

- Supernovae
- Supernovae
- Microlensing
- Coronagraphy
- Coronagraphy
- GO science, cosmic dawn
- GO science, galaxy formation & evolution
- GO science, nearby galaxies
- GI science, archival research

Euclid Update

- Passed Preliminary Design Review (PDR) in Fall, 2015
- Editorial Board led by John Peacock and Peter Schneider has started work
- The Euclid NASA Science Center at IPAC (ENSCI):
 - integrated into the Euclid Science Ground Segment
 - planning to support the US community to use Euclid data
 - http://www.euclid.caltech.edu/
- Both visible (VIS) and near infrared (NISP) instruments have passed recent reviews
 - ~80 US scientist and engineers working on Euclid as part of the 1300 member Euclid Consortium
- Includes Working Group (e.g. Yun Wang, Galaxy Clustering) and Work Package Leads
 - ➡ Launch date set for December, 2020

Credit: ESA http://euclid.jpl.nasa.gov/

Slide by Jason Rhodes

Dark Energy Equation of State Status and Prospects

Summary

- New Science Interest Group formed: CoSSIG
 - Please join! http://pcos.gsfc.nasa.gov/sigs/cossig.php
- Mid-decadal current assessment of progress relative to NRC recommendations includes key CoSSIG-related science, including:
 - WFIRST: Astro2010 top ranked large-scale space-based mission and its coronograph satisfies the #1 medium-scale priority, i.e., to prepare for 2020s planet imaging mission.
 - Euclid: 2012 NRC endorsement of NASA participation in Euclid
- NASA missions with CoSSIG science interests progressing well and have exciting year ahead:
 - Euclid passed number of recent reviews, US team now well- established, NASA IPAC science center to support US community
 - WFIRST healthy budget for formulation, Formulation Science Working Group announced in December, Phase A started.
- CoSSIG science with future flagship needs to be investigated.
- The answer to this puzzle will come from multiple observational signatures/probes and multiple missions.

The Observational Foundations of Dark Energy

• Weak-Lensing not presented is also complementary.

Olivier Doré APS, Physics of the Cosmos mini-Symposium, Salt Lake City, April 17th 2016

Multi-Probe and Survey Approach

Stage IV	DESI	LSST	Euclid	WFIRST-AFTA
Starts, duration	~2018, 5 yr	2020, 10 yr	2020 Q2, 7 yr	~2023, 5-6 yr
Area (deg²)	14,000 (N)	20,000 (S)	15,000 (N + S)	2,400 (S)
FoV (deg²)	7.9	10	0.54	0.281
Diameter (m)	4 (less 1.8+)	6.7	1.3	2.4
Spec. res. $\Delta\lambda/\lambda$	3-4000 (N _{fib} =5000)		250 (slitless)	550-800 (slitless)
Spec. range	360-980 nm		1.1-2 mm	1.35-1.95 mm
BAO/RSD	20-30m LRGs/[OII] ELGs 0.6 < z < 1.7, 1m QSOs/Lya 1.9 <z<4< td=""><td></td><td>~20-50m Hα ELGs z~0.7-2.1</td><td>20m Hα ELGs z = 1–2, 2m [OIII] ELGS z = 2–3</td></z<4<>		~20-50m Hα ELGs z~0.7-2.1	20m Hα ELGs z = 1–2, 2m [OIII] ELGS z = 2–3
pixel (arcsec)		0.7	0.13	0.12
lmaging/ weak lensing (0 <z<2.)< td=""><td></td><td>~30 gal/arcmin² 6 bands 320-1080 nm</td><td>30-35 gal/arcmin² Broad visible band 550– 900 nm</td><td>68 gal/arcmin² 3 bands 927-2000nm</td></z<2.)<>		~30 gal/arcmin ² 6 bands 320-1080 nm	30-35 gal/arcmin ² Broad visible band 550– 900 nm	68 gal/arcmin ² 3 bands 927-2000nm
SN1a		10 ⁴ -10 ⁵ SN1a/yr z = 0.–0.7 photometric		2700 SN1a z = 0.1–1.7 IFU spectroscopy

Compilation by Rachel Bean