Technology Landscape for the **Inflation Probe**

Jeff Mc Mahon

JPL

& readout

optics

GSFC

cryogenics

Detector Arrays

Planar Antenna-Coupled TES Bolometers

Berkeley Hardware Development

TRL: 4 | Rotermund, LTD-16 (2015)

-16 (2015)

TRL: 4

Jeong, LTD-16 (2015)

NIST: Horn Coupled Polarimeters

GSFC: Polarization-Sensitive Feed-Coupled TES

90 GHz CLASS Detector Module

40 GHz CLASS Array Integration and Test (JHU)

Wollack (NASA/GSFC) et al.

Detector Readout

Time-division multiplexing status: 64 channel / SCUBA-2 arrays operating with 10⁴ TES

MHz frequency-domain multiplexing

status: 68 channel / demonstrated to > 1000 pixels

GHz frequency-domain multiplexing for TES and KIDS

status: potentially thousands of TES (KID) detectors per module, less mature

Cryogenics (100 mK cooling)

4-10K cooling • MIRI cooler for JWST at high TRL for 4K cooling

- Astro-H flew with a JT cooler and an ADR
- Active area of development

Optical Elements: Lenses

Metamaterial Anti-Reflection Coated Lenses (Michigan)

Epoxy Coatings (Stanford) epoxy cast and machined onto

- epoxy cast and machined onto alumina lenses
- strain relieved by cutting a square grid pattern
- deployed on BICEP3
- being scaled to several layers

Optical Elements: Polarization Modulators

broad-band silicon metamaterial Half-Wave Plate (Michigan)

Optical Elements: Polarization Modulators

variable phase polarization modulator

- large diameter achievable
- last optical element before sky
- modulates between Q and V

CLASS Ground-based Atacama Deser

- Atacama Desert, Chile
- Four frequencies: 40, 90, 150, 220 GHz
- Dual-frequency operation at 150/220 GHz
- 60 cm mirror, ambient-temperature
- Voice-coil drive, 10 Hz operation

Sub-Orbital Demonstrations

SPIDER

EBEX

Flown On Balloons

- JPL and Berkeley detectors
- fMUX and tMUX
- HWP

Deployed on the Ground

- NIST, JPL, Berkeley detectors
- metamaterial optics

ACT

+ much more coming soon

Polar Bear

Scientific Developments for 2016

BICEP3 Operating Near Design Sensitivity Modular focal plane technology scales to arbitrary size

Keck Array Doubles 220 GHz Capability Now 2048 detectors after successful 2015 demonstration

JPL

Conclusions

NASA support for technology development has been crucial to advancing the state of the art in CMB measurement.

- Detectors, readout, optics, and cryogenics deployed and therefore at high TRL
- TRL must be assessed relative to the final application
 - 2015 PCOS PATR identified detectors, optical elements, and cryogenics as gaps
- CMB Technology development is dynamic with many advances on the horizon

