The CALorimetric Electron Telescope (CALET) Launch and Early On-Orbit Performance

T. Gregory Guzik for the CALET Collaboration

Louisiana State University Department of Physics & Astronomy

April APS 2016 Meeting

1

CALET Collaboration

2

O. Adriani²⁵, Y. Akaike², K. Asano⁷, Y. Asaoka^{8,31}, M.G. Bagliesi²⁹, G. Bigongiari²⁹, W.R. Binns³², S. Bonechi²⁹, M. Bongi²⁵, P. Brogi²⁹, J.H. Buckley³², G. Castellini²⁵, M.L. Cherry¹², G. Collazuol²⁶, V. Di Felice²⁸, K. Ebisawa⁹, H. Fuke⁹, T.G. Guzik¹², T. Hams³, M. Hareyama²³, N. Hasebe³¹, K. Hibino¹⁰, M. Ichimura⁴, K. Ioka¹¹, M.H. Israel³², A. Javaid¹², K. Kasahara³¹, J. Kataoka³¹, R. Kataoka¹⁶, Y. Katayose³³, C. Kato²², N. Kawanaka³⁰, H. Kitamura¹⁵, H.S. Krawczynski³², J.F. Krizmanic², S. Kuramata⁴, T. Lomtadze²⁷, P. Maestro²⁹, P.S. Marrocchesi²⁹, A.M. Messineo²⁷, J.W. Mitchell¹⁴, S. Miyake⁵, K. Mizutani²⁰, A.A. Moiseev³, K. Mori^{9,31}, M. Mori¹⁹, N. Mori²⁵, H.M. Motz³¹, K. Munakata²², H. Murakami³¹, Y.E. Nakagawa⁹, S. Nakahira⁸, J. Nishimura⁹, S. Okuno¹⁰, J.F. Ormes²⁴, S. Ozawa³¹, F. Palma²⁸, P. Papini²⁵, A.V. Penacchioni²⁹, B.F. Rauch³², S. Ricciarini²⁵, K. Sakai³, T. Sakamoto¹, M. Sasaki³, Y. Shimizu¹⁰, A. Shiomi¹⁷, R. Sparvoli²⁸, P. Spillantini²⁵, I. Takahashi¹, M. Takayanagi⁹, M. Takita⁷, T. Tamura¹⁰, N. Tateyama¹⁰, T. Terasawa⁷, H. Tomida⁹, S. Torii^{8,31}, Y. Tunesada¹⁸, Y. Uchihori¹⁵, S. Ueno⁹, E. Vannuccini²⁵, J.P. Wefel¹², K. Yamaoka¹³, S. Yanagita⁶, A. Yoshida¹, K. Yoshida²¹, and T. Yuda⁷

1)	Aoyama Gakuin University, Japan	17) Nihon University, Japan
2)	CRESST/NASA/GSFC and Universities Space Resear	ch 18) Osaka City University, Japan
	Association, USA	19) Ritsumeikan University, Japan
3)	CRESST/NASA/GSFC and University of Maryland, U	SA 20) Saitama University, Japan
4)	Hirosaki University, Japan	21) Shibaura Institute of Technology, Japan
5)	Ibaraki National College of Technology, Japan	22) Shinshu University, Japan
6)	Ibaraki University, Japan	23) St. Marianna University School of Medicine, Japan
7)	ICRR, University of Tokyo, Japan	24) University of Denver, USA
8)	JAXA, Japan	25) University of Florence, IFAC (CNR) and INFN, Italy
9)	JAXA/ISAS, Japan	26) University of Padova and INFN, Italy
10)	Kanagawa University, Japan	27) University of Pisa and INFN, Italy
11)	KEK, Japan	28) University of Rome Tor Vergata and INFN, Italy
12)	Louisiana State University, USA	29) University of Siena and INFN, Italy
13)	Nagoya University, Japan	30) The University of Tokyo, Japan
14)	NASA/GSFC, USA	31) Waseda University, Japan
15)	National Inst. of Radiological Sciences, Japan	32) Washington University-St. Louis, USA
16)	National Institute of Polar Research, Japan	33) Yokohama National University, Japan
v040	616	April APS 2016 Meeting

CALorimetric Electron Telescope Summary

Science Objectives

Nearby Cosmic-ray Sources

Dark Matter

Origin and Acceleration of Cosmic Rays

Cosmic – ray Propagation in the Galaxy

Solar Physics

Gamma-ray Transients

CGBM Measurement Capability

High energy photons: 7 keV – 20 MeV

CAL Measurement Capability

Electrons: 1 GeV – 20 TeV Gamma-rays: 10 GeV – 10*TeV Gamma-ray bursts: > 1 GeV Heavy ions $(1 \le Z \le 28)$: 10's GeV – 1,000* TeV Ultra Heavy (Z > 28): > 600 MeV/nucleon

v040616

CAL Instrument Overview

Field of view: ~ 45 degrees (from the zenith) Geometrical Factor: 0.12 m²sr (for electrons)

Unique features of CALET

Thick, fully active calorimeter: Allows measurements well into the TeV energy region with excellent energy resolution

Fine imaging upper calorimeter: Accurately identify the starting point of electromagnetic showers.

Detailed shower characterization: Lateral and longitudinal development of showers enables electrons and abundant protons to be powerfully separated.

	CHD (Charge Detector)	IMC (Imaging Calorimeter)	TASC (Total Absorption Calorimeter)
Function	Charge Measurement (Z=1-46)	Arrival Direction, Particle ID	Energy Measurement, Particle ID
Sensor (+ Absorber)	Plastic Scintillator : 14 × 1 layer (x,y) Unit Size: 32mm x 10mm x 450mm	SciFi : 448 x 8 layers (x,y) = 7168 Unit size: 1mm ² x 448 mm Total thickness of Tungsten: 3 X ₀	PWO log: 16 x 6 layers (x,y)= 192 Unit size: 19mm x 20mm x 326mm Total Thickness of PWO: 27 X ₀
Readout	PMT+CSA	64 -anode PMT+ ASIC	APD/PD+CSA PMT+CSA (for Trigger)
v040616	April APS 2016 Meeting		4

CAL Hardware Components

CAL constituent equipments

CHD: 14 × 1 layer (x,y) Unit Size: 32mm x 10mm x 450mm

IMC : 448 x 8 layers (x,y) = 7168 Unit size: 1mm² x 448 mm

TASC: 16 x 6 layers (x,y)= 192 Unit size: 19mm x 20mm x 326mm

CALET is now on the ISS !

Tanegashima Space Center to the ISS.

(4) August 25th: CALET is emplaced on port #9 of the JEM-EF and data communication with the payload is established.

rocket by the Japan Aerospace Exploration Agency (JAXA) at

20:50:49 (local time), CALET started its journey from

2 August 24th: The HTV-5 Transfer Vehicle (HTV-5) is grabbed by the ISS robotic arm.

(3) August 25th: The HTV-5 docks to the ISS at 2:28 (JSTT).

Launch to the initial operation (1)

- (1) Launch on 8/19 via H-IIB/HTV5. Dock on 8/25 to JEM port 9. No problem for their start up.
- (2) Performed the function checkout during 8/25 to 10/8. Confirmed there were no problems on their functions and performances.
- (3) Until 11/17, 90 days after the launch, conducted an observation to achieve the minimum mission success and obtained an appropriate amount of data. Since then, the observation has been carried out according to the steady processes.

Launch to the initial operation (2)

CGBM: First observed GRB event light curve(GRB 151006A) April APS 2016 Meeting

8

Overview of trigger modes for CALET

High Energy Shower Trigger (HE)

- High energy electrons (10GeV ~20TeV)
- High energy gamma rays ($10 \text{GeV} \sim 10 \text{TeV}$)
- Nuclei (a few10GeV~000TeV)

Low Energy Shower Trigger (LE)

- Low energy electron at high latitude $(1 \text{GeV} \sim 10 \text{GeV})$
- GeV gamma-rays originated from GRB (1GeV \sim)
- Ultra heavy nuclei (combined with heavy mode)

(*) In addition to above 3 trigger modes, heavy modes are defined for each of the above trigger mode. They are omitted here for simple explanation.

Auto Trigger (Pedestal/Test Pulse)

- For calibration: ADC offset measurement (Pedestal), FEC's response measurement (Test pulse)

Predominantly, timestamped changes of trigger setting are described in schedule command file. It makes possible to take pedestals, penetrating particles, low energy electrons at high latitude, and other dedicated data in addition to the most important high energy shower data.

Data Acquisition and Observed Event Number

Observing time and event number in high energy trigger mode (>10GeV) for 111 days from 13.10.2015-31.1.2016

Observing (Live) TimeAccumulated Event Number

0<u>⊾</u>

Very Preliminary Charge Histogram

Counts

р

Charge measurement in CHD

[Analysis method]

- After determining the incident position of CHD from the reconstructed track in IMC, the average of pulse height (MIP) is measured.
- Charge is corrected by using a track path length related to zenith angle.

We still have relatively poor statistics for odd-Z nuclei that are less abundant and heavier than oxygen. However, the atomic nuclei up to iron are clearly identified with the CHD only. By using additional information from IMC, more precise identification will be performed from now on ($\Delta z = 0.1-0.35$ in beau Counts Counts

Si

(CHD-X+CHD-Y)/2 [MIP]

Mg

Ne

(CHD-X+CHD-Y)/2 [MIP]

- CALET was successfully launched on HTV-5 from Tanegashima Space Center on August 19, 2015 at 8:50:49 p.m (JST).
- CALET was successfully berthed to the ISS on August 25th and began a functional checkout phase until the beginning of October 2015.
- CALET completed a calibration and initial operation phase on Nov 17, 2015, whence it began its standard operation phase.
- CALET has measured Cosmic Ray nuclei through iron, Cosmic Ray electrons & positrons, and astrophysical gamma-rays.
- CALET's CGBM has measured the light-curves of 8 GRB's as on Jan 1, 2016.
- From Oct 13, 2015 Jan 31, 2016 nearly 4.6 x 10⁵ electron candidate events over 10 GeV have been observed.