ULTRASAT: A Wide-Field UV Space Telescope

Revolutionize our understanding of the hot transient Universe

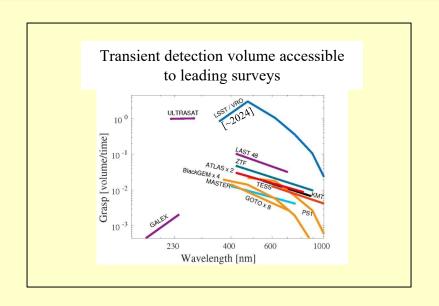
PI	E. Waxman (WIS)
Program Manager	U. Netzer (ISA/WIS)
Deputy PI	A. Gal-Yam (WIS)
Camera PI	D. Berge (DESY)
NASA Project scientist	J. Rhoads
Project Scientist	Y. Shvartzvald (WIS)
Science Lead	E. Ofek (WIS)
Payload Lead	S. Ben-Ami (WIS)
Technology Lead	O. Lapid (WIS)

Funding partners	Industry partners
ISA	IAI
WIS	Elop
DESY	Tower
NASA	

Eli Waxman | Weizmann Institute of Science

ustry tners

ULTRASAT's uniqueness


Key Properties

- Very large, 200 deg², field of view.
- High UV (230-290nm) sensitivity:

```
1.5 x 10^{-3} ph/cm<sup>2</sup> s (900s, 5\sigma) [m = 22.5].
```

Key Capabilities

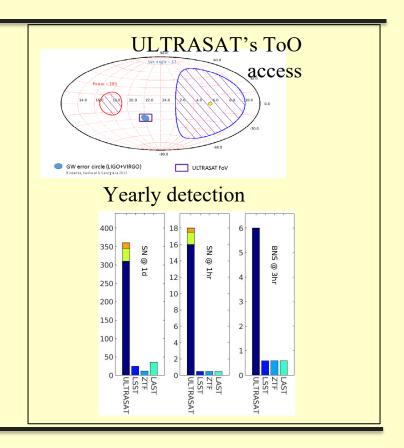
- Monitor an unprecedentedly large volume of the Universe.
- New window in wavelength (NUV) and in cadence (minutes - months).
- Real-time alerts to ground/space-based telescopes (GEO orbit), initiate world-wide follow-ups.
- ToO: Instantaneous >50% of the sky in <15 min for >3 hr.

ULTRASAT: A broad science impact

Source Type	# Events per	Science Impact	
	3 yr mission		
Supernovae			
Shock break-out and	> 40	Understand the explosive death	
Early (shock cooling) of core collapse SNe	> 500	of massive stars	
Superluminous SNe	> 250	Early evolution, shock cooling emission	
Type Ia SNe	> 1000	Discriminate between SD and DD progenitors, dust reddening	
Compact Object Transients			
Emission from Gravitational Wave events:	~ 25	Constrain the physics of the sources of	
NS-NS and NS-BH		gravitational waves	
Tidal disruption events	> 300 (high-cadence)	Accretion physics, black hole demographics	
	> 4500 (low-cadence)		
Quasars and Active Galactic Nuclei			
Continuous UV lightcurves	> 7500	Accretion physics, BLR reverberation mapping, lensed quasars	
AGN-related flares & transients	> 100	Accretion physics	
Stars & Exoplanets			
Active & Flaring stars	$> 4 \times 10^{5}$	Planet habitability, high-energy flare frequency,	
		stellar magnetic structure, gyrochronology, magnetospheres	
White dwarfs	$> 3 \times 10^4$	Planetary systems, debris accretion, rotation-related variability	
RR Lyrae	> 1000	Pulsation physics	
Nonradial hot pulsators, e.g., α Cyg,	> 250	Asteroseismology	
δ Scuti, SX Phe, β Cep types			
Eclipsing binaries	> 400	Chromosphere and eclipse mapping	
Galaxies and Clusters			
All Sky Survey – galaxies	> 108	Galaxy Evolution, star formation rate	
Gamma Ray Bursts			
GRBs occurring in-field	~ 30	Prompt emission & afterglow physics, dust reddening	
Orphan Afterglows	> 30	Fireball Γ and opening angle distributions	
Solar System			
Asteroids and other small bodies	> 104	Asteroid classification, origin	

ULTRASAT: Key Science Goals

EM counterparts to GW sources


Starting 2026: \sim 10 NS-NS merger events per year, \sim 100 deg² error boxes.

ULTRASAT will provide:

- Fast localization of NS-NS/BH mergers-Rapid, <15min, access to >50% of sky, Cover GW error box in a single image.
- UV light curves to measure ejecta properties.

Deaths of massive stars

- High quality early high cadence UV data,
 Rapid alerts for follow-ups,
 100's of SNe including rare types.
- Measure properties of supernova progenitors.
- Map progenitors to supernova types.
- Reveal pre-explosion evolution and mass loss.

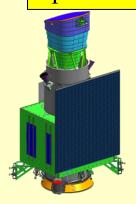
ULTRASAT: Mission profile

ALL SKY SURVEY

- 3hr/day during the first 6 months
- 7x deeper than state-of-the art (GALEX) (23 AB limiting mag @ |b|>30°)

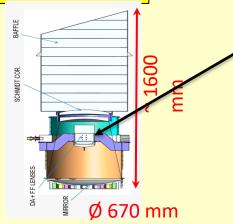
LONG STARES

- 2 directions near the Ecliptic poles, minimize Galactic extinction and zodiac bgnd


```
21 \text{ hr/d} - 5 \text{ min cadence}, 200 \text{ deg}^2
```

- 3 hr/d 4 d cadence, 8000 deg²
- Real-time data download and analysis
- Alerts within 15min of observations
- Targets of Opportunity (ToO's)
 - Instantaneous >50% of the sky in <15 min for >3 h
 - No limit on ToO number, except for max 75 with negative power balance (~33%)
 - Continuous transmission to the ground

ULTRASAT: Implementation & Collaboration


Management: Program Office @ WIS

Spacecraft: IAI

Telescope: Elop/Elbit

Focal Plane Array DESY/Helmholtz

Sensor:

Tower

(Israel)

Hosted launch to GTO: NASA

Launch Q2 2026

>3.5 year science mission (6 year fuel)

Dimensions: $1.5 \times 1.7 \times 3.4 \text{ (m}^3\text{)}$

Power: 500 W

Mass: 500 + 630 (Prop) kg

ULTRASAT: Science Collaboration

<u>Data policy</u>: Alerts public in real time;

12 mon. proprietary period for all other data products.

NASA Launch contribution-

Science return: 8 US PIs (NASA funded) joined WG's,

NASA project scientist: J. Rhoads.

VRO (LSST) collaboration-

Science return: 6 US PIs joined WG's.

** Joint NASA/VRO US PI selection process through the NASA call- completed.

US PIs: Barclay (GSFC), Bodewits (Auburn), Cenko (GSFC), Coughlin (Minnesota), Daylan (WUStL), Gezari (STScI), Ho (Cornell), Kara (MIT), Kilic (Oklahoma), Ramiaramanantsoa (ASU), Sand (Arizona), Stassun (Vanderbilt), Stern (JPL), Zabludoff (Arizona)

DESY Camera contribution-

Science return: 3 DESY Pls in WG's.

ULTRASAT: Science impact

- Revolutionize our view of the hot transient Universe:
 - Discovery volume 300 X GALEX,
 - Continuous min-mon cadence at 22.5 mag in a new window (NUV),
 - Real-time alerts to ground/space-based telescopes.
- A broad impact:

GW sources, SNe, variable and flare stars, AGN, TDEs, compact objects, galaxies.

Groundbreaking science with an affordable satellite mission.