

LINKS

Neil J. Cornish

- Sources & Science similarities and differences
- Analysis similarities and differences

Outline

Instruments - similarities and differences

Instruments

LIGO

Frequency / Hz

Instruments - Differences

LIGO

LISA

Space based, one shot to get it right

Low power, single pass

- Varying armlengths, heterodyned phase readout, synthetic interferometer
- Moving detector for most sources

One triple channel detector

Finite arm length effects important

Unresolved signals major source of noise

Source Localization

Sources and Science

LISA

Black Hole Mergers

$t_{\rm LISA} = t_{\rm LI}$

Isolated black hole merger waveforms for LISA are just rescaled versions of the LIGO waveforms

$$\frac{1}{GO}\left(\frac{M_{\rm LISA}}{M_{\rm LIGO}}\right)$$

Black Hole Mergers

Key difference - typically many more cycles in-band for LISA

$N_{\rm LISA} = 8.4 \times 10$

$$N_{\rm LIGO} = 4.6 \left(\frac{30M_{\odot}}{\mathcal{M}} \frac{30\text{Hz}}{f_0}\right)^{5/3}$$

$$0^{3} \left(\frac{10^{5} M_{\odot}}{\mathcal{M}} \frac{10^{-4} \text{Hz}}{f_{0}} \right)^{5/3}$$

LIGO SOBHB Mass & Spin distributions

Majority of systems near equal mass, low-spin, quasi-circular orbits

[LIGO/Virgo 2111.03634]

Binary Black Hole Mergers **LISA**

Very Massive $10^3 M_{\odot} \rightarrow 10^8 M_{\odot}$ Large mass ratios likely the norm High S/N ~ $10 \rightarrow 10^4$ Wet mergers, environmental effects Likely to have EM counterparts Many scenarios predict spin precession Many scenarios predict orbital eccentricity

LISA Binary Black Hole Mergers

$$N_{\rm LISA} = 8.4 \times 10^3 \left(\frac{10^5 M_{\odot}}{\mathcal{M}} \frac{10^{-4} \rm{Hz}}{f_0}\right)^{5/3}$$

Large number of cycles and high S/N makes it easier to detect spin precession and orbital eccentricity

 $\tau_{\rm orb} < \tau_{\rm orb \ prec} < \tau_{\rm spin \ prec} < \tau_{\rm decay}$

LISA Binary Black Hole Mergers

 $N_{\rm LISA} = 8.4 \times 10^3 \left(\frac{10^5 M_{\odot}}{\mathcal{M}} \frac{10^{-4} \rm{Hz}}{f_{\odot}}\right)^{5/3}$

Large number of cycles and high S/N makes it easier to detect deviations from GR But... waveform accuracy requirements are much higher for LISA

 $E[MM] = \frac{D-1}{2(S/N)^2}$

Analysis: Detection and Characterization

- Short duration, non overlapping
- Low Latency Search
 - Maximum likelihood inspired
 - Analyze short time segments
 - Grid based search, simple templates
 Signal duration often comparable to mission lifetime
- Longer latency Bayesian follow up
- Also Continuous Wave, Un-modeled and Stochastic searches

- Millions of overlapping signals
- High dimensional search space
 - Grid based searches impractical
 - Stochastic search methods

 Need a Global Fit: Binaries of all kinds, stochastic signals and unmodeled signals. All together

- Millions of overlapping signals
- Unknown number of detectable sources
- Non-stationary and non-Gaussian noise
 - Data gaps and disturbances
- Time varying instrument response \bigcirc
- Complex signals, multiple harmonics \mathbf{O}

LISA is not LIGO in Space

LISA Global Fit - Simultaneously fitting tens of thousands of signals and noise

Analysis: Detection

LIGO

Template grid, max likelihood inspired

LISA

Semi-coherent, likelihood based stochastic search

LISA Global Fit

- Transdimensional Markov Chain Monte Carlo (RJMCMC)
- Blocked Updates update each component of the signal/ noise model in multiple sweeps
- Only pass residuals decouples the analysis types
- Update the fit every few days as new data arrives

Trans-dimensional Inference

Example of LISA - LIGO crossover: BayesWave

LISA Data Challenge: Sangria Edition

f (Hz)

[Litttenberg & Cornish, arXiv: 2301.03673]

[Litttenberg & Cornish, arXiv: 2301.03673]

f (Hz)

[Litttenberg & Cornish, arXiv: 2301.03673]

f (Hz)

[Litttenberg & Cornish, arXiv: 2301.03673]

f (Hz)

12 months of Sangria data - MBHBs

Sangria data - Galactic Binaries

All candidate UCB sources at 12 months

Example of how a source resolves with time

LIGO - LISA Source Catalogs

Both are probabilistic - quote probabilities that a putative signal is astrophysical

Name	$\mathbf{FAR}_{\min} \ (\mathrm{yr}^{-1})$	$p_{ m astro}$	m_1/M_{\odot}	m_2/M_{\odot}	${\cal M}/M_{\odot}$	$\chi_{ m eff}$	First appears in
	F				. 1 . 17	10.10	
GW150914	$< 1 \times 10^{-5}$	> 0.99	$35.6^{+4.7}_{-3.1}$	$30.6^{+3.0}_{-4.4}$	$28.6^{+1.7}_{-1.5}$	$-0.01^{+0.12}_{-0.13}$	[13]
GW151012	7.92×10^{-3}	> 0.99	$23.2^{+14.9}_{-5.5}$	$13.6\substack{+4.1 \\ -4.8}$	$15.2^{+2.1}_{-1.2}$	$0.05\substack{+0.31 \\ -0.20}$	[14]
GW151226	$< 1 \times 10^{-5}$	> 0.99	$13.7^{+8.8}_{-3.2}$	$7.7^{+2.2}_{-2.5}$	$8.9\substack{+0.3 \\ -0.3}$	$0.18\substack{+0.20 \\ -0.12}$	[15]
GW170104	$< 1 \times 10^{-5}$	> 0.99	$30.8\substack{+7.3 \\ -5.6}$	$20.0\substack{+4.9 \\ -4.6}$	$21.4^{+2.2}_{-1.8}$	$-0.04\substack{+0.17\\-0.21}$	[16]
GW170608	$< 1 \times 10^{-5}$	> 0.99	$11.0\substack{+5.5 \\ -1.7}$	$7.6^{+1.4}_{-2.2}$	$7.9\substack{+0.2 \\ -0.2}$	$0.03\substack{+0.19 \\ -0.07}$	[17]
GW170729	1.80×10^{-1}	0.98	$50.2^{+16.2}_{-10.2}$	$34.0\substack{+9.1\-10.1}$	$35.4_{-4.8}^{+6.5}$	$0.37\substack{+0.21 \\ -0.25}$	[2]
GW170809	$< 1 \times 10^{-5}$	> 0.99	$35.0\substack{+8.3 \\ -5.9}$	$23.8^{+5.1}_{-5.2}$	$24.9^{+2.1}_{-1.7}$	$0.08\substack{+0.17 \\ -0.17}$	[2]
GW170814	$< 1 \times 10^{-5}$	> 0.99	$30.6\substack{+5.6 \\ -3.0}$	$25.2^{+2.8}_{-4.0}$	$24.1^{+1.4}_{-1.1}$	$0.07\substack{+0.12 \\ -0.12}$	[18]
GW170817	$< 1 \times 10^{-5}$	> 0.99	$1.46\substack{+0.12 \\ -0.10}$	$1.27\substack{+0.09 \\ -0.09}$	$1.186\substack{+0.001\\-0.001}$	$0.00\substack{+0.02\\-0.01}$	[19]
GW170818	$< 1 \times 10^{-5}$	> 0.99	$35.4^{+7.5}_{-4.7}$	$26.7^{+4.3}_{-5.2}$	$26.5^{+2.1}_{-1.7}$	$-0.09\substack{+0.18\\-0.21}$	[2]
GW170823	$< 1 \times 10^{-5}$	> 0.99	$39.5^{+11.2}_{-6.7}$	$29.0\substack{+6.7 \\ -7.8}$	$29.2\substack{+4.6 \\ -3.6}$	$0.09\substack{+0.22 \\ -0.26}$	[2]
$GW190408_181802$	$< 1 \times 10^{-5}$	> 0.99	$24.6^{+5.1}_{-3.4}$	$18.4^{+3.3}_{-3.6}$	$18.3^{+1.9}_{-1.2}$	$-0.03\substack{+0.14\\-0.19}$	[4]
$GW190412_053044$	$< 1 \times 10^{-5}$	> 0.99	$30.1^{+4.7}_{-5.1}$	$8.3^{+1.6}_{-0.9}$	$13.3\substack{+0.4\\-0.3}$	$0.25\substack{+0.08\\-0.11}$	[20]
$GW190413_134308$	1.81×10^{-1}	0.99	$47.5^{+13.5}_{-10.7}$	$31.8^{+11.7}_{-10.8}$	$33.0^{+8.2}_{-5.4}$	$-0.03\substack{+0.25\\-0.29}$	[4]
$GW190421_{-}213856$	2.83×10^{-3}	> 0.99	$41.3^{+10.4}_{-6.9}$	$31.9\substack{+8.0 \\ -8.8}$	$31.2^{+5.9}_{-4.2}$	$-0.06\substack{+0.22\\-0.27}$	[4]
$GW190425_081805$	3.38×10^{-2}	0.78	$2.0\substack{+0.6\\-0.3}$	$1.4\substack{+0.3 \\ -0.3}$	$1.44\substack{+0.02\\-0.02}$	$0.06\substack{+0.11 \\ -0.05}$	[21]
$GW190503_{-}185404$	$< 1 \times 10^{-5}$	> 0.99	$43.3\substack{+9.2 \\ -8.1}$	$28.4\substack{+7.7 \\ -8.0}$	$30.2^{+4.2}_{-4.2}$	$-0.03\substack{+0.20 \\ -0.26}$	[4]
$GW190512_180714$	$< 1 \times 10^{-5}$	> 0.99	$23.3^{+5.3}_{-5.8}$	$12.6\substack{+3.6 \\ -2.5}$	$14.6\substack{+1.3 \\ -1.0}$	$0.03\substack{+0.12 \\ -0.13}$	[4]
$GW190513_{-205428}$	$< 1 \times 10^{-5}$	> 0.99	$35.7\substack{+9.5 \\ -9.2}$	$18.0\substack{+7.7 \\ -4.1}$	$21.6\substack{+3.8 \\ -1.9}$	$0.11\substack{+0.28 \\ -0.17}$	[4]

$GW190929_{-}012149$	1.55×10^{-1}	$0.87 80.8^{+33.0}_{-33.2} \ 24.1^+_{-}$	${}^{19.3}_{10.6}$ $35.8^{+14.9}_{-8.2}$	$0.01\substack{+0.34 \\ -0.33}$	[4]
$GW190930_{-}133541$	1.23×10^{-2}	$> 0.99 \ 12.3^{+12.4}_{-2.3} \ 7.8^+_{-}$	$8.5^{+0.5}_{-0.5}$	$0.14\substack{+0.31 \\ -0.15}$	[4]
$GW191105_{-}143521$	1.18×10^{-2}	$> 0.99 \ 10.7^{+3.7}_{-1.6} \ 7.7^+_{-1.6}$	$1.4 \\ 1.9 7.82^{+0.61}_{-0.45}$	$-0.02\substack{+0.13\\-0.09}$	[1]
$GW191109_{-}010717$	1.80×10^{-4}	$> 0.99 65^{+11}_{-11} 47^+_{-}$	$47.5^{+9.6}_{-7.5}$	$-0.29\substack{+0.42\\-0.31}$	[1]
$GW191127_{-}050227$	2.49×10^{-1}	$0.49 53^{+47}_{-20} 24^+_{-}$	$^{17}_{14}$ 29.9 $^{+11.7}_{-9.1}$	$0.18\substack{+0.34 \\ -0.36}$	[1]
$GW191129_{-}134029$	$< 1 \times 10^{-5}$	$> 0.99 \ 10.7^{+4.1}_{-2.1} \ 6.7^{+}_{-2.1}$	$^{1.5}_{1.7}$ $7.31^{+0.43}_{-0.28}$	$0.06\substack{+0.16 \\ -0.08}$	[1]
$GW191204_{-}171526$	$< 1 \times 10^{-5}$	$> 0.99 \ 11.9^{+3.3}_{-1.8} \ 8.2^+_{-1.8}$	$^{1.4}_{1.6}$ $8.55^{+0.38}_{-0.27}$	$0.16\substack{+0.08 \\ -0.05}$	[1]
$GW191215_{-}223052$	$< 1 \times 10^{-5}$	> 0.99 24.9 ^{+7.1} _{-4.1} 18.1 ⁺ ₋	${}^{3.8}_{4.1}$ 18.4 ${}^{+2.2}_{-1.7}$	$-0.04\substack{+0.17\\-0.21}$	[1]
$GW191216_{-}213338$	$< 1 \times 10^{-5}$	$> 0.99 \ 12.1^{+4.6}_{-2.3} \ 7.7^+_{-}$	$^{1.6}_{1.9}$ $8.33^{+0.22}_{-0.19}$	$0.11\substack{+0.13 \\ -0.06}$	[1]
$GW191222_033537$	$< 1 \times 10^{-5}$	$> 0.99 \ 45.1^{+10.9}_{-8.0} \ 34.7^+_{-8.0}$	$^{9.3}_{10.5}$ $33.8^{+7.1}_{-5.0}$	$-0.04\substack{+0.20\-0.25}$	[1]
$GW191230_{-}180458$	5.02×10^{-2}	$0.95 49.4^{+14.0}_{-9.6} 37^+$	$^{11}_{12}$ $36.5^{+8.2}_{-5.6}$	$-0.05\substack{+0.26 \\ -0.31}$	[1]
$GW200105_{-}162426$	2.04×10^{-1}	$0.36 8.9^{+1.2}_{-1.5} 1.9^{+}_{-1.5}$	$_{0.2}^{0.3}$ $3.41^{+0.08}_{-0.07}$	$-0.01\substack{+0.11\\-0.15}$	[10]
$GW200112_{-}155838$	$< 1 \times 10^{-5}$	$> 0.99 \ 35.6^{+6.7}_{-4.5} \ 28.3^+_{-}$	$^{4.4}_{5.9}$ 27.4 $^{+2.6}_{-2.1}$	$0.06\substack{+0.15 \\ -0.15}$	[1]
$GW200115_042309$	$< 1 \times 10^{-5}$	$> 0.99 5.9^{+2.0}_{-2.5} 1.44^+_{-}$	$_{0.29}^{0.85}$ $2.43^{+0.05}_{-0.07}$	$-0.15\substack{+0.24\\-0.42}$	[10]
$GW200128_022011$	4.29×10^{-3}	$> 0.99 \ 42.2^{+11.6}_{-8.1} \ 32.6^{+11.6}_{-8.1}$	$^{9.5}_{9.2}$ $32.0^{+7.5}_{-5.5}$	$0.12\substack{+0.24 \\ -0.25}$	[1]
$GW200129_{-}065458$	$< 1 \times 10^{-5}$	$> 0.99 \ 34.5^{+9.9}_{-3.2} \ 28.9^{+}_{-3.2}$	$^{3.4}_{9.3}$ 27.2 $^{+2.1}_{-2.3}$	$0.11\substack{+0.11 \\ -0.16}$	[1]
$GW200202_{-}154313$	$< 1 \times 10^{-5}$	$> 0.99 \ 10.1^{+3.5}_{-1.4} \ 7.3^+_{-1.4}$	$^{1.1}_{1.7}$ 7.49 $^{+0.24}_{-0.20}$	$0.04\substack{+0.13 \\ -0.06}$	[1]
$GW200208_{-1}30117$	3.11×10^{-4}	$> 0.99 \ 37.8^{+9.2}_{-6.2} \ 27.4^{+}_{-6.2}$	${}^{6.1}_{7.4}$ 27.7 ${}^{+3.6}_{-3.1}$	$-0.07\substack{+0.22\\-0.27}$	[1]
$\rm GW200209_085452$	4.64×10^{-2}	$0.95 35.6^{+10.5}_{-6.8} 27.1^+_{-}$	$27.8 - 26.7^{+6.0}_{-4.2}$	$-0.12\substack{+0.24\\-0.30}$	[1]
$GW200219_{-}094415$	9.94×10^{-4}	> 0.99 37.5 ^{+10.1} _{-6.9} 27.9 ⁺ ₋	$^{7.4}_{8.4}$ 27.6 $^{+5.6}_{-3.8}$	$-0.08\substack{+0.23\\-0.29}$	[1]
$GW200224_222234$	$< 1 \times 10^{-5}$	$> 0.99 \ 40.0^{+6.9}_{-4.5} \ 32.5^{+}_{-}$	${}^{5.0}_{7.2}$ $31.1{}^{+3.2}_{-2.6}$	$0.10\substack{+0.15 \\ -0.15}$	[1]
$GW200225_{-}060421$	$< 1 \times 10^{-5}$	$> 0.99 \ 19.3^{+5.0}_{-3.0} \ 14.0^{+}_{-3.0}$	$^{2.8}_{3.5}$ 14.2 $^{+1.5}_{-1.4}$	$-0.12\substack{+0.17 \\ -0.28}$	[1]
$GW200302_{-}015811$	1.12×10^{-1}	$0.91 37.8^{+8.7}_{-8.5} 20.0^+_{-5}$	$^{8.1}_{5.7}$ 23.4 $^{+4.7}_{-3.0}$	$0.01\substack{+0.25 \\ -0.26}$	[1]
$GW200311_{-}115853$	$< 1 \times 10^{-5}$	$> 0.99 \ 34.2^{+6.4}_{-3.8} \ 27.7^{+}_{-3.8}$	${}^{4.1}_{5.9}$ 26.6 ${}^{+2.4}_{-2.0}$	$-0.02\substack{+0.16 \\ -0.20}$	[1]

[LIGO/Virgo 2111.03634]

LIGO - LISA Source Catalogs

[Karnesis et al, arXiv: 2103.14598]

Both grow with time, but LISA catalogs can be atemporal

This MBHM merged in first 3 months. Posteriors continue to improve as confusion noise drops

LIGO heritage will be valuable for LISA

Much work to be done!

Summary

But....

LISA science and analysis is significantly different

Extras

Links between LIGO CWs and LISA EMRIs

Simple signal - slowly chirping sinusoid

But..., modulated by Earth's orbit, huge number of cycles, $\sim 10^9$, low S/N per cycle, spread over large number of frequency bins , $\sim 10^5$

Complex signal - many evolving frequencies (or "voices"), large number of cycles, $\sim 10^5$, low S/N per cycle, spread over many voices

Cost of a coherent search

The cost of a coherent search scales as the observation time T to some power α , where α scales with the number of signal parameters D

h(t) = t	Example: Detecting a chirping signal
SNR /	Signal-to-noise
$\frac{V}{\Delta V} \sim$	Prior/Posterior volume ratio
$\sim T$	Filter cost
$\sim T^{9.5}$	Search cost

 $cost \sim T^{\alpha}$

 $A\cos(2\pi f_0 t + \pi \dot{f}_0 t^2 + \pi/3 \ddot{f}_0 t^3 + \phi_0)$

 $\sim T^{1/2}$

 $\sim SNR^5 T^6 \sim T^{8.5}$

Semi-coherent searches

A semi-coherent search breaks up the analysis into N short segments $T_{\rm coh}$ with $T = N T_{\rm coh}$

$cost \sim T'$

Semi-coherent searches can be much cheaper than fully coherent searches. But they are less sensitive

Minimum detectable amplitude for a cohere

Minimum detectable amplitude for a semi-cohere

$$\beta T^{\alpha-\beta}_{\rm coh} \qquad \beta \sim 2$$

ent search
$$h_{\min} \sim \frac{1}{T^{1/2}}$$

ent search $h_{\min} \sim \frac{1}{T^{1/4} T_{col}^{1/4}}$

Low latency single-source search results used as proposals in global fit

F-statistic maps for GBs

[Littenber, Cornish, Lackeos & Robson, arXiv:2004.08464]

Low latency BH search

[Cornish, arXiv: 2110.06238]

0

Building up the solution - "time annealing"

3 weeks

N₂ Multivariate Gaussian Proposals

Building up the solution - "time annealing"

 ϕ rad