mHz GW Science as a Function of Sensitivity

Tyson B. Littenberg (UMD/GSFC)

Gravitational Waves 101

Gravitational wave detection is "big science"

GW Sources

mHz GW Science Goals

- Understanding the formation history of the Universe
 - Measure massive black hole *masses* and *spins* to constrain formation/growth models
- Confronting GR with measurement
 - Detecting EMRIs = measuring the BHs metric.
 - Does NR correctly predict the strong-field dynamics of BH-BH mergers?
 - Other (WDs, Additional polarization modes, ...)
- Opening unexplored Discovery space
 - GW themselves!
 - Stochastic background
 - Cosmic strings
 - etc...

How do detector characteristics impact Science?

GW Detector Noise Curves

 $\log f$

 $\log f$

Massive Black Hole Mergers

NWNH: Measurements of BH mass and spin will be important for understanding the significance of mergers in the building of galaxies.

 $\log f$

NWNH: *Measurements of BH mass and spin will be important for understanding the significance of mergers in the building of galaxies.*

*Review of LISA's capabilities

NWNH: *Measurements of BH mass and spin will be important for understanding the significance of mergers in the building of galaxies.*

NWNH: Measurements of BH mass and spin will be important for understanding the significance of mergers in the building of galaxies.

NWNH: *Measurements of BH mass and spin will be important for understanding the significance of mergers in the building of galaxies.*

	LISA	Minimum MBH Sensitivity
Arm length (km)	5 x 10 ⁶	5 x 10 ⁴
Displacement (m Hz ^{-1/2})	8 x 10 ⁻¹²	8 x 10 ⁻¹¹
Acceleration (m/s ² Hz ^{-1/2})	3 x 10 ⁻¹⁵	3 x 10 -14

*Relax each of the key requirements to locate the minimum BH science

NWNH: Measurements of BH mass and spin will be important for understanding the significance of mergers in the building of galaxies.

NWNH: Measurements of BH mass and spin will be important for understanding the significance of mergers in the building of galaxies.

NWNH: Measurements of BH mass and spin will be important for understanding the significance of mergers in the building of galaxies.

	LISA	Minimum MBH Sensitivity
Arm length (km)	5 x 10 ⁶	5 x 104
Displacement (m Hz ^{-1/2})	8 x 10 ⁻¹²	8 x 10 ⁻¹¹
Acceleration (m/s ² Hz ^{-1/2})	3 x 10 ⁻¹⁵	3 x 10 ⁻¹⁴
MBH Rates (yr ⁻¹)	40/20	5/5

*Span of possible event rates

Quoted results are for (small/large) seeds

Extreme Mass Ratio In-spirals

NWNH: Detections of signals from EMRIs would provide exquisitely precise tests of Einstein's theory of gravity.

NWNH: Detections of signals from EMRIs would provide exquisitely precise tests of Einstein's theory of gravity.

	LISA	Minimum MBH Sensitivity
Arm length (km)	5 x 10 ⁶	5 x 104
Displacement (m Hz ^{-1/2})	8 x 10 ⁻¹²	8 x 10 ⁻¹¹
Acceleration (m/s ² Hz ^{-1/2})	3 x 10 ⁻¹⁵	3 x 10 ⁻¹⁴
MBH Rates (yr ⁻¹)	40/20	5/5
EMRI Detections	300	0

-EMRI rates are very uncertain -- Factors of 10x are in play. -# of detections assumes 2-year integration time.

NWNH: Detections of signals from EMRIs would provide exquisitely precise tests of Einstein's theory of gravity.

	LISA	Minimum MBH Sensitivity	Minimum EMRI Sensitivity
Arm length (km)	5 x 10 ⁶	5 x 10 ⁴	1 x 10 ⁶
Displacement (m Hz ^{-1/2})	8 x 10 ⁻¹²	8 x 10 ⁻¹¹	8 x 10 -12
Acceleration (m/s ² Hz ^{-1/2})	3 x 10 ⁻¹⁵	3 x 10 ⁻¹⁴	3 x 10 -15
MBH Rates (yr ⁻¹)	40/20	5/5	
EMRI Detections	300	0	

- -EMRI rates are very uncertain -- Factors of 10x are in play. *Individual results may vary.
- -# of detections assumes 2-year integration time.

NWNH: Detections of signals from EMRIs would provide exquisitely precise tests of Einstein's theory of gravity.

NWNH: Detections of signals from EMRIs would provide exquisitely precise tests of Einstein's theory of gravity.

	LISA	Minimum MBH Sensitivity	Minimum EMRI Sensitivity
Arm length (km)	5 x 10 ⁶	5 x 10 ⁴	1 x 10 ⁶
Displacement (m Hz ^{-1/2})	8 x 10 ⁻¹²	8 x 10 ⁻¹¹	8 x 10 ⁻¹²
Acceleration (m/s ² Hz ^{-1/2})	3 x 10 ⁻¹⁵	3 x 10 ⁻¹⁴	3 x 10 ⁻¹⁵
MBH Rates (yr ⁻¹)	40/20	5/5	20/20
EMRI Detections	300	0	10

*Shrinking LISA by 5x puts us right on the edge of delivering EMRI science.

Galactic Binaries

Science: Galactic Binaries

Unique probe of galactic astronomy & stellar evolution. Multimessenger astronomy -- long term tests of GR.

	LISA	Minimum MBH Sensitivity	Minimum EMRI Sensitivity
Arm length (km)	5 x 10 ⁶	5 x 10 ⁴	1 x 10 ⁶
Displacement (m Hz ^{-1/2})	8 x 10 ⁻¹²	8 x 10 ⁻¹¹	8 x 10 ⁻¹²
Acceleration (m/s ² Hz ^{-1/2})	3 x 10 ⁻¹⁵	3 x 10 ⁻¹⁴	3 x 10 ⁻¹⁵
MBH Rates (yr ⁻¹)	40/20	5/5	20/20
EMRI Detections	300	0	10
WDWD Detections	2 x 10 ⁴ (10)	20 (0)	1 x 10 ⁴ (8)

*Estimates for 2-year integration times.

Number of verification binaries in parentheses

Parameter Estimation: Quantity and Quality

minimize:
$$\int (d - R' * h')^2$$

Parameter Estimation: Orbits & R $R \rightarrow R(t; \vec{k}, \Omega, \psi)$

Parameter Estimation: 4 vs. 6 links

Parameter Estimation: 4 vs. 6 links

Parameter Estimation: 4 vs. 6 links

For MBH mergers, lose: -factor of <2 in SNR -factor of ~10 in distance determination. -factor of ~100 in angular resolution! -mass & spin errors change by < 10x -and they're already really precise.

In Summary:

• To do NWNH science, we have some margin around the original LISA design.

- But it doesn't take much to ruin the sensitivity curve -- factors of a few equate to orders of magnitude degradation in science.
- MBH mergers have the most wiggle room
 - Keep the arms w/in a factor of 10ish, and the noise performance w/in a factor of a few-ish.
 - Precision measurement of Mass & Spin come with good SNR.
 - Mass and Spin distributions go a long way toward constraining MBH formation scenarios (z>few).
 - But, **simultaneously measuring both polarizations is** *critical* for:
 - Sky-localization (optical counterparts)
 - Distance determination (optical counterparts + *better* constraints on formation scenarios)
- EMRI detection rates are highly uncertain. Consequently there is less margin for the detectors.
 - But, if you can detect an EMRI, you can precisely measure its parameters.
- Galactic Binary science for "free."

mHz GW Science as a Function of Sensitivity

Tyson B. Littenberg (UMD/GSFC)

Extra Slides

mHz Gravitational Wave Astronomy Supermassive Black Hole Mergers:

- Large-scale structure formation requires major mergers between galaxies.
- Supermassive black holes at the cores of merging galaxies dynamically sink to the center.
- Once close enough, the emission of GW drives the black holes to merge.
- Ridiculously energetic: 10⁵⁶ erg/s (c.f., 10⁴³ erg/s for Sn Ia)!

mHz Gravitational Wave Astronomy Extreme Mass Ratio In-spirals (EMRIs)

- Compact objects which form near SMBHs can be scattered into capture orbits.
- The compact object makes *numerous* orbits before plunging into the central BH.
- The orbit of the compact object provides a detailed trace of the space-time around the central black hole.

mHz Gravitational Wave Astronomy White Dwarf Binaries

- Around 30 known mass transferring systems (of which AM CVn is the archetype).
- A handful of detached white dwarf binaries from SDSS
- ~60 million of their friends, waiting to be discovered

NWNH: Detections of signals from EMRIs would provide exquisitely precise tests of Einstein's theory of gravity.

Ν

EMRI horizon distance (SNR > 15)

NWNH: Detections of signals from EMRIs would provide exquisitely precise tests of Einstein's theory of gravity.

Ν

EMRI horizon distance (SNR > 15)

M_{total} (M_{sun})

Parameter Estimation: Keep going, theorists!

$\sigma_{\vec{\theta}}^{2PN}/10/10/10$